Preparation of viscoelastic gel‐like halloysite hybrids and their application in halloysite/polystyrene composites

Self‐reinforcement gel‐like halloysite nanotube (g‐HNT) hybrids with various viscoelastic behaviors were fabricated by firstly treating with various concentrations of sodium hydroxide (NaOH) solution and then grafting tertiary amine and ion‐exchange reacting with sulfonate anions. The morphology, co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer international 2017-10, Vol.66 (10), p.1372-1381
Hauptverfasser: Yin, Xianze, Weng, Puxin, Yang, Shiwen, Han, Lu, Du, Zhengliang, Wang, Luoxin, Tan, Yeqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1381
container_issue 10
container_start_page 1372
container_title Polymer international
container_volume 66
creator Yin, Xianze
Weng, Puxin
Yang, Shiwen
Han, Lu
Du, Zhengliang
Wang, Luoxin
Tan, Yeqiang
description Self‐reinforcement gel‐like halloysite nanotube (g‐HNT) hybrids with various viscoelastic behaviors were fabricated by firstly treating with various concentrations of sodium hydroxide (NaOH) solution and then grafting tertiary amine and ion‐exchange reacting with sulfonate anions. The morphology, composition, thermal stability and rheological behavior of the g‐HNT hybrids were systematically characterized and analyzed using various methods. It is found that the viscoelasticity of g‐HNT hybrids can be easily regulated by using different NaOH solution‐treated HNTs as inorganic core and temperatures. In addition, the g‐HNT hybrids treated with medium concentration of NaOH (0.06 mol L−1) have the lowest viscosity and highest level of dispersion compared with those treated with other concentrations of NaOH solution. Due to the amphiphilic nature of g‐HNT hybrids and their lower viscosity than HNT powder, as novel hybrid fillers, they were utilized to prepare polystyrene composites by direct melt blending for achieving simultaneous reinforcement and plasticization effects. Besides the above mentioned advantages, the thermal conductivity of polystyrene composites is also surprisingly improved by reducing the interfacial mismatch between the filler and polymer matrix. The solvent‐free and self‐reinforcement hybrids provide a convenient and green path for fabricating high‐performance polymer composites. © 2017 Society of Chemical Industry The viscoelasticity of self‐reinforcement gel‐like halloysite nanotube (g‐HNT) hybrids fabricated via ion‐exchange reaction is such that they can be used as a novel plasticizer for improving the mechanical properties of polystyrene composites.
doi_str_mv 10.1002/pi.5383
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934101184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934101184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2893-353e85772e519f21bcda283fba454356d9a6378e210ad974aec81f5f2c4268853</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgCtYqvkLAhQuZNpfJTLKU4qVQsAtdhzSTsanpJCZTZXY-gs_okzh1XLhxdQ6Hj__AD8A5RhOMEJkGO2GU0wMwwkiUGcKkOAQjJJjIOEb0GJyktEEIcSHECLTLaIKKqrW-gb6GbzZpb5xKrdXw2bivj09nXwxcK-d8l2zbr90q2ipB1VSwXRsboQrBWT1k2OaPnQbvutR20TQGar8Nfn9Np-CoVi6Zs985Bk-3N4-z-2zxcDefXS8yTbigGWXUcFaWxDAsaoJXulKE03qlcpZTVlRCFbTkhmCkKlHmymiOa1YTnZOCc0bH4GLIDdG_7kxq5cbvYtO_lFjQHCOMed6ry0Hp6FOKppYh2q2KncRI7iuVwcp9pb28GuS7dab7j8nl_Ed_A2Tseb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934101184</pqid></control><display><type>article</type><title>Preparation of viscoelastic gel‐like halloysite hybrids and their application in halloysite/polystyrene composites</title><source>Access via Wiley Online Library</source><creator>Yin, Xianze ; Weng, Puxin ; Yang, Shiwen ; Han, Lu ; Du, Zhengliang ; Wang, Luoxin ; Tan, Yeqiang</creator><creatorcontrib>Yin, Xianze ; Weng, Puxin ; Yang, Shiwen ; Han, Lu ; Du, Zhengliang ; Wang, Luoxin ; Tan, Yeqiang</creatorcontrib><description>Self‐reinforcement gel‐like halloysite nanotube (g‐HNT) hybrids with various viscoelastic behaviors were fabricated by firstly treating with various concentrations of sodium hydroxide (NaOH) solution and then grafting tertiary amine and ion‐exchange reacting with sulfonate anions. The morphology, composition, thermal stability and rheological behavior of the g‐HNT hybrids were systematically characterized and analyzed using various methods. It is found that the viscoelasticity of g‐HNT hybrids can be easily regulated by using different NaOH solution‐treated HNTs as inorganic core and temperatures. In addition, the g‐HNT hybrids treated with medium concentration of NaOH (0.06 mol L−1) have the lowest viscosity and highest level of dispersion compared with those treated with other concentrations of NaOH solution. Due to the amphiphilic nature of g‐HNT hybrids and their lower viscosity than HNT powder, as novel hybrid fillers, they were utilized to prepare polystyrene composites by direct melt blending for achieving simultaneous reinforcement and plasticization effects. Besides the above mentioned advantages, the thermal conductivity of polystyrene composites is also surprisingly improved by reducing the interfacial mismatch between the filler and polymer matrix. The solvent‐free and self‐reinforcement hybrids provide a convenient and green path for fabricating high‐performance polymer composites. © 2017 Society of Chemical Industry The viscoelasticity of self‐reinforcement gel‐like halloysite nanotube (g‐HNT) hybrids fabricated via ion‐exchange reaction is such that they can be used as a novel plasticizer for improving the mechanical properties of polystyrene composites.</description><identifier>ISSN: 0959-8103</identifier><identifier>EISSN: 1097-0126</identifier><identifier>DOI: 10.1002/pi.5383</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Anion exchanging ; Anions ; Blending effects ; composite ; Direct melting ; Fillers ; halloysite ; Heat transfer ; Hybrids ; Ion exchange ; Melt blending ; Polymer matrix composites ; Polystyrene ; Polystyrene resins ; Powder ; Reinforcement ; Rheological properties ; Sodium ; Sodium hydroxide ; Thermal conductivity ; Thermal stability ; Viscoelasticity ; Viscosity</subject><ispartof>Polymer international, 2017-10, Vol.66 (10), p.1372-1381</ispartof><rights>2017 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2893-353e85772e519f21bcda283fba454356d9a6378e210ad974aec81f5f2c4268853</citedby><cites>FETCH-LOGICAL-c2893-353e85772e519f21bcda283fba454356d9a6378e210ad974aec81f5f2c4268853</cites><orcidid>0000-0002-3341-3608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpi.5383$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpi.5383$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yin, Xianze</creatorcontrib><creatorcontrib>Weng, Puxin</creatorcontrib><creatorcontrib>Yang, Shiwen</creatorcontrib><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Du, Zhengliang</creatorcontrib><creatorcontrib>Wang, Luoxin</creatorcontrib><creatorcontrib>Tan, Yeqiang</creatorcontrib><title>Preparation of viscoelastic gel‐like halloysite hybrids and their application in halloysite/polystyrene composites</title><title>Polymer international</title><description>Self‐reinforcement gel‐like halloysite nanotube (g‐HNT) hybrids with various viscoelastic behaviors were fabricated by firstly treating with various concentrations of sodium hydroxide (NaOH) solution and then grafting tertiary amine and ion‐exchange reacting with sulfonate anions. The morphology, composition, thermal stability and rheological behavior of the g‐HNT hybrids were systematically characterized and analyzed using various methods. It is found that the viscoelasticity of g‐HNT hybrids can be easily regulated by using different NaOH solution‐treated HNTs as inorganic core and temperatures. In addition, the g‐HNT hybrids treated with medium concentration of NaOH (0.06 mol L−1) have the lowest viscosity and highest level of dispersion compared with those treated with other concentrations of NaOH solution. Due to the amphiphilic nature of g‐HNT hybrids and their lower viscosity than HNT powder, as novel hybrid fillers, they were utilized to prepare polystyrene composites by direct melt blending for achieving simultaneous reinforcement and plasticization effects. Besides the above mentioned advantages, the thermal conductivity of polystyrene composites is also surprisingly improved by reducing the interfacial mismatch between the filler and polymer matrix. The solvent‐free and self‐reinforcement hybrids provide a convenient and green path for fabricating high‐performance polymer composites. © 2017 Society of Chemical Industry The viscoelasticity of self‐reinforcement gel‐like halloysite nanotube (g‐HNT) hybrids fabricated via ion‐exchange reaction is such that they can be used as a novel plasticizer for improving the mechanical properties of polystyrene composites.</description><subject>Anion exchanging</subject><subject>Anions</subject><subject>Blending effects</subject><subject>composite</subject><subject>Direct melting</subject><subject>Fillers</subject><subject>halloysite</subject><subject>Heat transfer</subject><subject>Hybrids</subject><subject>Ion exchange</subject><subject>Melt blending</subject><subject>Polymer matrix composites</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Powder</subject><subject>Reinforcement</subject><subject>Rheological properties</subject><subject>Sodium</subject><subject>Sodium hydroxide</subject><subject>Thermal conductivity</subject><subject>Thermal stability</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0959-8103</issn><issn>1097-0126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEUBuAgCtYqvkLAhQuZNpfJTLKU4qVQsAtdhzSTsanpJCZTZXY-gs_okzh1XLhxdQ6Hj__AD8A5RhOMEJkGO2GU0wMwwkiUGcKkOAQjJJjIOEb0GJyktEEIcSHECLTLaIKKqrW-gb6GbzZpb5xKrdXw2bivj09nXwxcK-d8l2zbr90q2ipB1VSwXRsboQrBWT1k2OaPnQbvutR20TQGar8Nfn9Np-CoVi6Zs985Bk-3N4-z-2zxcDefXS8yTbigGWXUcFaWxDAsaoJXulKE03qlcpZTVlRCFbTkhmCkKlHmymiOa1YTnZOCc0bH4GLIDdG_7kxq5cbvYtO_lFjQHCOMed6ry0Hp6FOKppYh2q2KncRI7iuVwcp9pb28GuS7dab7j8nl_Ed_A2Tseb8</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Yin, Xianze</creator><creator>Weng, Puxin</creator><creator>Yang, Shiwen</creator><creator>Han, Lu</creator><creator>Du, Zhengliang</creator><creator>Wang, Luoxin</creator><creator>Tan, Yeqiang</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3341-3608</orcidid></search><sort><creationdate>201710</creationdate><title>Preparation of viscoelastic gel‐like halloysite hybrids and their application in halloysite/polystyrene composites</title><author>Yin, Xianze ; Weng, Puxin ; Yang, Shiwen ; Han, Lu ; Du, Zhengliang ; Wang, Luoxin ; Tan, Yeqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2893-353e85772e519f21bcda283fba454356d9a6378e210ad974aec81f5f2c4268853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anion exchanging</topic><topic>Anions</topic><topic>Blending effects</topic><topic>composite</topic><topic>Direct melting</topic><topic>Fillers</topic><topic>halloysite</topic><topic>Heat transfer</topic><topic>Hybrids</topic><topic>Ion exchange</topic><topic>Melt blending</topic><topic>Polymer matrix composites</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Powder</topic><topic>Reinforcement</topic><topic>Rheological properties</topic><topic>Sodium</topic><topic>Sodium hydroxide</topic><topic>Thermal conductivity</topic><topic>Thermal stability</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xianze</creatorcontrib><creatorcontrib>Weng, Puxin</creatorcontrib><creatorcontrib>Yang, Shiwen</creatorcontrib><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Du, Zhengliang</creatorcontrib><creatorcontrib>Wang, Luoxin</creatorcontrib><creatorcontrib>Tan, Yeqiang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Xianze</au><au>Weng, Puxin</au><au>Yang, Shiwen</au><au>Han, Lu</au><au>Du, Zhengliang</au><au>Wang, Luoxin</au><au>Tan, Yeqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of viscoelastic gel‐like halloysite hybrids and their application in halloysite/polystyrene composites</atitle><jtitle>Polymer international</jtitle><date>2017-10</date><risdate>2017</risdate><volume>66</volume><issue>10</issue><spage>1372</spage><epage>1381</epage><pages>1372-1381</pages><issn>0959-8103</issn><eissn>1097-0126</eissn><abstract>Self‐reinforcement gel‐like halloysite nanotube (g‐HNT) hybrids with various viscoelastic behaviors were fabricated by firstly treating with various concentrations of sodium hydroxide (NaOH) solution and then grafting tertiary amine and ion‐exchange reacting with sulfonate anions. The morphology, composition, thermal stability and rheological behavior of the g‐HNT hybrids were systematically characterized and analyzed using various methods. It is found that the viscoelasticity of g‐HNT hybrids can be easily regulated by using different NaOH solution‐treated HNTs as inorganic core and temperatures. In addition, the g‐HNT hybrids treated with medium concentration of NaOH (0.06 mol L−1) have the lowest viscosity and highest level of dispersion compared with those treated with other concentrations of NaOH solution. Due to the amphiphilic nature of g‐HNT hybrids and their lower viscosity than HNT powder, as novel hybrid fillers, they were utilized to prepare polystyrene composites by direct melt blending for achieving simultaneous reinforcement and plasticization effects. Besides the above mentioned advantages, the thermal conductivity of polystyrene composites is also surprisingly improved by reducing the interfacial mismatch between the filler and polymer matrix. The solvent‐free and self‐reinforcement hybrids provide a convenient and green path for fabricating high‐performance polymer composites. © 2017 Society of Chemical Industry The viscoelasticity of self‐reinforcement gel‐like halloysite nanotube (g‐HNT) hybrids fabricated via ion‐exchange reaction is such that they can be used as a novel plasticizer for improving the mechanical properties of polystyrene composites.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/pi.5383</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3341-3608</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0959-8103
ispartof Polymer international, 2017-10, Vol.66 (10), p.1372-1381
issn 0959-8103
1097-0126
language eng
recordid cdi_proquest_journals_1934101184
source Access via Wiley Online Library
subjects Anion exchanging
Anions
Blending effects
composite
Direct melting
Fillers
halloysite
Heat transfer
Hybrids
Ion exchange
Melt blending
Polymer matrix composites
Polystyrene
Polystyrene resins
Powder
Reinforcement
Rheological properties
Sodium
Sodium hydroxide
Thermal conductivity
Thermal stability
Viscoelasticity
Viscosity
title Preparation of viscoelastic gel‐like halloysite hybrids and their application in halloysite/polystyrene composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20viscoelastic%20gel%E2%80%90like%20halloysite%20hybrids%20and%20their%20application%20in%20halloysite/polystyrene%20composites&rft.jtitle=Polymer%20international&rft.au=Yin,%20Xianze&rft.date=2017-10&rft.volume=66&rft.issue=10&rft.spage=1372&rft.epage=1381&rft.pages=1372-1381&rft.issn=0959-8103&rft.eissn=1097-0126&rft_id=info:doi/10.1002/pi.5383&rft_dat=%3Cproquest_cross%3E1934101184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934101184&rft_id=info:pmid/&rfr_iscdi=true