The conjunction problem for thin elastic and rigid inclusions in an elastic body
Under consideration is the conjunction problem for a thin elastic and a thin rigid inclusions that are in contact at one point and placed in an elastic body. Depending on what kind of conjunction conditions are set at the contact point of inclusions, we consider the two cases: the case of no fractur...
Gespeichert in:
Veröffentlicht in: | Journal of applied and industrial mathematics 2017-07, Vol.11 (3), p.444-452 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 452 |
---|---|
container_issue | 3 |
container_start_page | 444 |
container_title | Journal of applied and industrial mathematics |
container_volume | 11 |
creator | Puris, V. A. |
description | Under consideration is the conjunction problem for a thin elastic and a thin rigid inclusions that are in contact at one point and placed in an elastic body. Depending on what kind of conjunction conditions are set at the contact point of inclusions, we consider the two cases: the case of no fracture, where, as the conjunction conditions, we take the matching of displacements at the contact point and preservation of the angle between the inclusions, and the case with a fracture in which only the matching of displacements is assumed. At the point of conjunction, we obtain the boundary conditions for the differential formulation of the problem. On the positive face of the rigid inclusion, there is delamination. On the crack faces, some nonlinear boundary conditions of the type of inequalities are set, that prevent mutual penetration of the faces. The existence and uniqueness theorems for the solution of the equilibrium problem are proved in both cases. |
doi_str_mv | 10.1134/S1990478917030152 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1933855736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1933855736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1832-52bf3d07fe9be793bd2375b3d41a4eac66e451e9bd3cf84ec291ae5d404d08633</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGo_gLeA59Ukk2w2Ryn-KRQUrOclm2TblG22JruHfntTKkUQTzO8-b03wyB0S8k9pcAfPqhShMtKUUmAUMEu0OQoFVwqeXnuK3WNZin5hgBlJZQlm6D31cZh04ftGMzg-4D3sW86t8NtH_Gw8QG7TqfBG6yDxdGvvcU-mG5MGU65zfoZaXp7uEFXre6Sm_3UKfp8flrNX4vl28ti_rgsDK2AFYI1LVgiW6caJxU0loEUDVhONXfalKXjguahBdNW3BmmqHbCcsItqUqAKbo75eaDv0aXhnrbjzHklTVVAJUQEspM0RNlYp9SdG29j36n46GmpD7-rv7zu-xhJ0_KbFi7-Cv5X9M3M3xwSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933855736</pqid></control><display><type>article</type><title>The conjunction problem for thin elastic and rigid inclusions in an elastic body</title><source>Springer Nature - Complete Springer Journals</source><creator>Puris, V. A.</creator><creatorcontrib>Puris, V. A.</creatorcontrib><description>Under consideration is the conjunction problem for a thin elastic and a thin rigid inclusions that are in contact at one point and placed in an elastic body. Depending on what kind of conjunction conditions are set at the contact point of inclusions, we consider the two cases: the case of no fracture, where, as the conjunction conditions, we take the matching of displacements at the contact point and preservation of the angle between the inclusions, and the case with a fracture in which only the matching of displacements is assumed. At the point of conjunction, we obtain the boundary conditions for the differential formulation of the problem. On the positive face of the rigid inclusion, there is delamination. On the crack faces, some nonlinear boundary conditions of the type of inequalities are set, that prevent mutual penetration of the faces. The existence and uniqueness theorems for the solution of the equilibrium problem are proved in both cases.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478917030152</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary conditions ; Contact angle ; Delamination ; Elasticity ; Existence theorems ; Inclusions ; Inequalities ; Matching ; Mathematics ; Mathematics and Statistics ; Topological manifolds ; Uniqueness theorems</subject><ispartof>Journal of applied and industrial mathematics, 2017-07, Vol.11 (3), p.444-452</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Journal of Applied and Industrial Mathematics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1832-52bf3d07fe9be793bd2375b3d41a4eac66e451e9bd3cf84ec291ae5d404d08633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990478917030152$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990478917030152$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Puris, V. A.</creatorcontrib><title>The conjunction problem for thin elastic and rigid inclusions in an elastic body</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>Under consideration is the conjunction problem for a thin elastic and a thin rigid inclusions that are in contact at one point and placed in an elastic body. Depending on what kind of conjunction conditions are set at the contact point of inclusions, we consider the two cases: the case of no fracture, where, as the conjunction conditions, we take the matching of displacements at the contact point and preservation of the angle between the inclusions, and the case with a fracture in which only the matching of displacements is assumed. At the point of conjunction, we obtain the boundary conditions for the differential formulation of the problem. On the positive face of the rigid inclusion, there is delamination. On the crack faces, some nonlinear boundary conditions of the type of inequalities are set, that prevent mutual penetration of the faces. The existence and uniqueness theorems for the solution of the equilibrium problem are proved in both cases.</description><subject>Boundary conditions</subject><subject>Contact angle</subject><subject>Delamination</subject><subject>Elasticity</subject><subject>Existence theorems</subject><subject>Inclusions</subject><subject>Inequalities</subject><subject>Matching</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Topological manifolds</subject><subject>Uniqueness theorems</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWGo_gLeA59Ukk2w2Ryn-KRQUrOclm2TblG22JruHfntTKkUQTzO8-b03wyB0S8k9pcAfPqhShMtKUUmAUMEu0OQoFVwqeXnuK3WNZin5hgBlJZQlm6D31cZh04ftGMzg-4D3sW86t8NtH_Gw8QG7TqfBG6yDxdGvvcU-mG5MGU65zfoZaXp7uEFXre6Sm_3UKfp8flrNX4vl28ti_rgsDK2AFYI1LVgiW6caJxU0loEUDVhONXfalKXjguahBdNW3BmmqHbCcsItqUqAKbo75eaDv0aXhnrbjzHklTVVAJUQEspM0RNlYp9SdG29j36n46GmpD7-rv7zu-xhJ0_KbFi7-Cv5X9M3M3xwSw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Puris, V. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>The conjunction problem for thin elastic and rigid inclusions in an elastic body</title><author>Puris, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1832-52bf3d07fe9be793bd2375b3d41a4eac66e451e9bd3cf84ec291ae5d404d08633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Contact angle</topic><topic>Delamination</topic><topic>Elasticity</topic><topic>Existence theorems</topic><topic>Inclusions</topic><topic>Inequalities</topic><topic>Matching</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Topological manifolds</topic><topic>Uniqueness theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puris, V. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puris, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The conjunction problem for thin elastic and rigid inclusions in an elastic body</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>11</volume><issue>3</issue><spage>444</spage><epage>452</epage><pages>444-452</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>Under consideration is the conjunction problem for a thin elastic and a thin rigid inclusions that are in contact at one point and placed in an elastic body. Depending on what kind of conjunction conditions are set at the contact point of inclusions, we consider the two cases: the case of no fracture, where, as the conjunction conditions, we take the matching of displacements at the contact point and preservation of the angle between the inclusions, and the case with a fracture in which only the matching of displacements is assumed. At the point of conjunction, we obtain the boundary conditions for the differential formulation of the problem. On the positive face of the rigid inclusion, there is delamination. On the crack faces, some nonlinear boundary conditions of the type of inequalities are set, that prevent mutual penetration of the faces. The existence and uniqueness theorems for the solution of the equilibrium problem are proved in both cases.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478917030152</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1990-4789 |
ispartof | Journal of applied and industrial mathematics, 2017-07, Vol.11 (3), p.444-452 |
issn | 1990-4789 1990-4797 |
language | eng |
recordid | cdi_proquest_journals_1933855736 |
source | Springer Nature - Complete Springer Journals |
subjects | Boundary conditions Contact angle Delamination Elasticity Existence theorems Inclusions Inequalities Matching Mathematics Mathematics and Statistics Topological manifolds Uniqueness theorems |
title | The conjunction problem for thin elastic and rigid inclusions in an elastic body |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20conjunction%20problem%20for%20thin%20elastic%20and%20rigid%20inclusions%20in%20an%20elastic%20body&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Puris,%20V.%20A.&rft.date=2017-07-01&rft.volume=11&rft.issue=3&rft.spage=444&rft.epage=452&rft.pages=444-452&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478917030152&rft_dat=%3Cproquest_cross%3E1933855736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933855736&rft_id=info:pmid/&rfr_iscdi=true |