Why Does Deep and Cheap Learning Work So Well?

We show how the success of deep learning could depend not only on mathematics but also on physics: although well-known mathematical theorems guarantee that neural networks can approximate arbitrary functions well, the class of functions of practical interest can frequently be approximated through “c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2017-09, Vol.168 (6), p.1223-1247
Hauptverfasser: Lin, Henry W., Tegmark, Max, Rolnick, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1247
container_issue 6
container_start_page 1223
container_title Journal of statistical physics
container_volume 168
creator Lin, Henry W.
Tegmark, Max
Rolnick, David
description We show how the success of deep learning could depend not only on mathematics but also on physics: although well-known mathematical theorems guarantee that neural networks can approximate arbitrary functions well, the class of functions of practical interest can frequently be approximated through “cheap learning” with exponentially fewer parameters than generic ones. We explore how properties frequently encountered in physics such as symmetry, locality, compositionality, and polynomial log-probability translate into exceptionally simple neural networks. We further argue that when the statistical process generating the data is of a certain hierarchical form prevalent in physics and machine learning, a deep neural network can be more efficient than a shallow one. We formalize these claims using information theory and discuss the relation to the renormalization group. We prove various “no-flattening theorems” showing when efficient linear deep networks cannot be accurately approximated by shallow ones without efficiency loss; for example, we show that n variables cannot be multiplied using fewer than 2 n neurons in a single hidden layer.
doi_str_mv 10.1007/s10955-017-1836-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1933664042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A502362785</galeid><sourcerecordid>A502362785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-ef5135691ed3f9b611c36ddb548396011ad711ef94a129ff2e7783cec31b37723</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsMbv47NiOJ1S1fEmVGAB1tNzk3KakSbHbof-eRGFgQTecdHqfu9NDyC3wCXBu7hNwqxTjYBjkUjN1RkagjGBWgzwnI86FYJkBdUmuUtpyzm1u1YhMlpsTnbeY6BxxT31T0tkG_Z4u0MematZ02cYv-t7SJdb1wzW5CL5OePPbx-Tz6fFj9sIWb8-vs-mCFdLmB4ZBgVTaApYy2JUGKKQuy5XKcmk1B_ClAcBgMw_ChiDQmFwWWEhYSWOEHJO7Ye8-tt9HTAe3bY-x6U46sFJqnfGsT02G1NrX6KomtIfoi65K3FVF22CouvlUcSG1MLnqABiAIrYpRQxuH6udjycH3PUe3eDRdR5d79H1jBiY1GWbNcY_r_wL_QDDSHGH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933664042</pqid></control><display><type>article</type><title>Why Does Deep and Cheap Learning Work So Well?</title><source>SpringerLink Journals</source><creator>Lin, Henry W. ; Tegmark, Max ; Rolnick, David</creator><creatorcontrib>Lin, Henry W. ; Tegmark, Max ; Rolnick, David</creatorcontrib><description>We show how the success of deep learning could depend not only on mathematics but also on physics: although well-known mathematical theorems guarantee that neural networks can approximate arbitrary functions well, the class of functions of practical interest can frequently be approximated through “cheap learning” with exponentially fewer parameters than generic ones. We explore how properties frequently encountered in physics such as symmetry, locality, compositionality, and polynomial log-probability translate into exceptionally simple neural networks. We further argue that when the statistical process generating the data is of a certain hierarchical form prevalent in physics and machine learning, a deep neural network can be more efficient than a shallow one. We formalize these claims using information theory and discuss the relation to the renormalization group. We prove various “no-flattening theorems” showing when efficient linear deep networks cannot be accurately approximated by shallow ones without efficiency loss; for example, we show that n variables cannot be multiplied using fewer than 2 n neurons in a single hidden layer.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-017-1836-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Artificial neural networks ; Functions (mathematics) ; Information theory ; Machine learning ; Mathematical analysis ; Mathematical and Computational Physics ; Neural networks ; Neurons ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theorems ; Theoretical</subject><ispartof>Journal of statistical physics, 2017-09, Vol.168 (6), p.1223-1247</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-ef5135691ed3f9b611c36ddb548396011ad711ef94a129ff2e7783cec31b37723</citedby><cites>FETCH-LOGICAL-c398t-ef5135691ed3f9b611c36ddb548396011ad711ef94a129ff2e7783cec31b37723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-017-1836-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-017-1836-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lin, Henry W.</creatorcontrib><creatorcontrib>Tegmark, Max</creatorcontrib><creatorcontrib>Rolnick, David</creatorcontrib><title>Why Does Deep and Cheap Learning Work So Well?</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We show how the success of deep learning could depend not only on mathematics but also on physics: although well-known mathematical theorems guarantee that neural networks can approximate arbitrary functions well, the class of functions of practical interest can frequently be approximated through “cheap learning” with exponentially fewer parameters than generic ones. We explore how properties frequently encountered in physics such as symmetry, locality, compositionality, and polynomial log-probability translate into exceptionally simple neural networks. We further argue that when the statistical process generating the data is of a certain hierarchical form prevalent in physics and machine learning, a deep neural network can be more efficient than a shallow one. We formalize these claims using information theory and discuss the relation to the renormalization group. We prove various “no-flattening theorems” showing when efficient linear deep networks cannot be accurately approximated by shallow ones without efficiency loss; for example, we show that n variables cannot be multiplied using fewer than 2 n neurons in a single hidden layer.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Functions (mathematics)</subject><subject>Information theory</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9gsMbv47NiOJ1S1fEmVGAB1tNzk3KakSbHbof-eRGFgQTecdHqfu9NDyC3wCXBu7hNwqxTjYBjkUjN1RkagjGBWgzwnI86FYJkBdUmuUtpyzm1u1YhMlpsTnbeY6BxxT31T0tkG_Z4u0MematZ02cYv-t7SJdb1wzW5CL5OePPbx-Tz6fFj9sIWb8-vs-mCFdLmB4ZBgVTaApYy2JUGKKQuy5XKcmk1B_ClAcBgMw_ChiDQmFwWWEhYSWOEHJO7Ye8-tt9HTAe3bY-x6U46sFJqnfGsT02G1NrX6KomtIfoi65K3FVF22CouvlUcSG1MLnqABiAIrYpRQxuH6udjycH3PUe3eDRdR5d79H1jBiY1GWbNcY_r_wL_QDDSHGH</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Lin, Henry W.</creator><creator>Tegmark, Max</creator><creator>Rolnick, David</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170901</creationdate><title>Why Does Deep and Cheap Learning Work So Well?</title><author>Lin, Henry W. ; Tegmark, Max ; Rolnick, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-ef5135691ed3f9b611c36ddb548396011ad711ef94a129ff2e7783cec31b37723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Functions (mathematics)</topic><topic>Information theory</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Henry W.</creatorcontrib><creatorcontrib>Tegmark, Max</creatorcontrib><creatorcontrib>Rolnick, David</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Henry W.</au><au>Tegmark, Max</au><au>Rolnick, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why Does Deep and Cheap Learning Work So Well?</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>168</volume><issue>6</issue><spage>1223</spage><epage>1247</epage><pages>1223-1247</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We show how the success of deep learning could depend not only on mathematics but also on physics: although well-known mathematical theorems guarantee that neural networks can approximate arbitrary functions well, the class of functions of practical interest can frequently be approximated through “cheap learning” with exponentially fewer parameters than generic ones. We explore how properties frequently encountered in physics such as symmetry, locality, compositionality, and polynomial log-probability translate into exceptionally simple neural networks. We further argue that when the statistical process generating the data is of a certain hierarchical form prevalent in physics and machine learning, a deep neural network can be more efficient than a shallow one. We formalize these claims using information theory and discuss the relation to the renormalization group. We prove various “no-flattening theorems” showing when efficient linear deep networks cannot be accurately approximated by shallow ones without efficiency loss; for example, we show that n variables cannot be multiplied using fewer than 2 n neurons in a single hidden layer.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-017-1836-5</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2017-09, Vol.168 (6), p.1223-1247
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_1933664042
source SpringerLink Journals
subjects Approximation
Artificial neural networks
Functions (mathematics)
Information theory
Machine learning
Mathematical analysis
Mathematical and Computational Physics
Neural networks
Neurons
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theorems
Theoretical
title Why Does Deep and Cheap Learning Work So Well?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20Does%20Deep%20and%20Cheap%20Learning%20Work%20So%20Well?&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Lin,%20Henry%20W.&rft.date=2017-09-01&rft.volume=168&rft.issue=6&rft.spage=1223&rft.epage=1247&rft.pages=1223-1247&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-017-1836-5&rft_dat=%3Cgale_proqu%3EA502362785%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933664042&rft_id=info:pmid/&rft_galeid=A502362785&rfr_iscdi=true