Some remarks on the structure of finite Morse index solutions to the Allen–Cahn equation in R2
For a solution of the Allen–Cahn equation in R 2 , under the natural linear growth energy bound, we show that the blowing down limit is unique. Furthermore, if the solution has finite Morse index, the blowing down limit satisfies the multiplicity one property.
Gespeichert in:
Veröffentlicht in: | Nonlinear differential equations and applications 2017, Vol.24 (5) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Nonlinear differential equations and applications |
container_volume | 24 |
creator | Wang, Kelei |
description | For a solution of the Allen–Cahn equation in
R
2
, under the natural linear growth energy bound, we show that the blowing down limit is unique. Furthermore, if the solution has finite Morse index, the blowing down limit satisfies the multiplicity one property. |
doi_str_mv | 10.1007/s00030-017-0481-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_1933265759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1933265759</sourcerecordid><originalsourceid>FETCH-LOGICAL-p717-e56d05bf7397128b93dfb0e5e08c0479b138a619502e8a75103dc045abf00293</originalsourceid><addsrcrecordid>eNpNkEtOwzAQhi0EEqVwAHaWWBvGdhzHy6riJRUhUfYhaSY0JbWL7UgsuQM35CQ4lAWrGen_5qGPkHMOlxxAXwUAkMCAawZZwZk-IBOeCWAGIDtMPQjOjBbimJyEsIEE5tJMyMvSbZF63Fb-LVBnaVwjDdEPqzh4pK6lbWe7iPTB-YC0sw1-0OD6IXbOBhrd78Cs79F-f37Nq7Wl-D5UY5pg-iROyVFb9QHP_uqULG-un-d3bPF4ez-fLdhOp59R5Q2outXSaC6K2simrQEVQrGCTJuay6LKuVEgsKi04iCbFKiqbgGEkVNysd-68-59wBDLjRu8TQdLbqQUudJqpMSeCjvf2Vf0_ygoR4_l3mOZ9JSjx1LLH9QMZb0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933265759</pqid></control><display><type>article</type><title>Some remarks on the structure of finite Morse index solutions to the Allen–Cahn equation in R2</title><source>Springer Online Journals</source><creator>Wang, Kelei</creator><creatorcontrib>Wang, Kelei</creatorcontrib><description>For a solution of the Allen–Cahn equation in
R
2
, under the natural linear growth energy bound, we show that the blowing down limit is unique. Furthermore, if the solution has finite Morse index, the blowing down limit satisfies the multiplicity one property.</description><identifier>ISSN: 1021-9722</identifier><identifier>EISSN: 1420-9004</identifier><identifier>DOI: 10.1007/s00030-017-0481-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Blowing ; Mathematics ; Mathematics and Statistics</subject><ispartof>Nonlinear differential equations and applications, 2017, Vol.24 (5)</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Springer International Publishing AG 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p717-e56d05bf7397128b93dfb0e5e08c0479b138a619502e8a75103dc045abf00293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00030-017-0481-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00030-017-0481-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Wang, Kelei</creatorcontrib><title>Some remarks on the structure of finite Morse index solutions to the Allen–Cahn equation in R2</title><title>Nonlinear differential equations and applications</title><addtitle>Nonlinear Differ. Equ. Appl</addtitle><description>For a solution of the Allen–Cahn equation in
R
2
, under the natural linear growth energy bound, we show that the blowing down limit is unique. Furthermore, if the solution has finite Morse index, the blowing down limit satisfies the multiplicity one property.</description><subject>Analysis</subject><subject>Blowing</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1021-9722</issn><issn>1420-9004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkEtOwzAQhi0EEqVwAHaWWBvGdhzHy6riJRUhUfYhaSY0JbWL7UgsuQM35CQ4lAWrGen_5qGPkHMOlxxAXwUAkMCAawZZwZk-IBOeCWAGIDtMPQjOjBbimJyEsIEE5tJMyMvSbZF63Fb-LVBnaVwjDdEPqzh4pK6lbWe7iPTB-YC0sw1-0OD6IXbOBhrd78Cs79F-f37Nq7Wl-D5UY5pg-iROyVFb9QHP_uqULG-un-d3bPF4ez-fLdhOp59R5Q2outXSaC6K2simrQEVQrGCTJuay6LKuVEgsKi04iCbFKiqbgGEkVNysd-68-59wBDLjRu8TQdLbqQUudJqpMSeCjvf2Vf0_ygoR4_l3mOZ9JSjx1LLH9QMZb0</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Wang, Kelei</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2017</creationdate><title>Some remarks on the structure of finite Morse index solutions to the Allen–Cahn equation in R2</title><author>Wang, Kelei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p717-e56d05bf7397128b93dfb0e5e08c0479b138a619502e8a75103dc045abf00293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Blowing</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kelei</creatorcontrib><jtitle>Nonlinear differential equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kelei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some remarks on the structure of finite Morse index solutions to the Allen–Cahn equation in R2</atitle><jtitle>Nonlinear differential equations and applications</jtitle><stitle>Nonlinear Differ. Equ. Appl</stitle><date>2017</date><risdate>2017</risdate><volume>24</volume><issue>5</issue><issn>1021-9722</issn><eissn>1420-9004</eissn><abstract>For a solution of the Allen–Cahn equation in
R
2
, under the natural linear growth energy bound, we show that the blowing down limit is unique. Furthermore, if the solution has finite Morse index, the blowing down limit satisfies the multiplicity one property.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00030-017-0481-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1021-9722 |
ispartof | Nonlinear differential equations and applications, 2017, Vol.24 (5) |
issn | 1021-9722 1420-9004 |
language | eng |
recordid | cdi_proquest_journals_1933265759 |
source | Springer Online Journals |
subjects | Analysis Blowing Mathematics Mathematics and Statistics |
title | Some remarks on the structure of finite Morse index solutions to the Allen–Cahn equation in R2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20remarks%20on%20the%20structure%20of%20finite%20Morse%20index%20solutions%20to%20the%20Allen%E2%80%93Cahn%20equation%20in%20R2&rft.jtitle=Nonlinear%20differential%20equations%20and%20applications&rft.au=Wang,%20Kelei&rft.date=2017&rft.volume=24&rft.issue=5&rft.issn=1021-9722&rft.eissn=1420-9004&rft_id=info:doi/10.1007/s00030-017-0481-7&rft_dat=%3Cproquest_sprin%3E1933265759%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933265759&rft_id=info:pmid/&rfr_iscdi=true |