Some remarks on the structure of finite Morse index solutions to the Allen–Cahn equation in R2

For a solution of the Allen–Cahn equation in R 2 , under the natural linear growth energy bound, we show that the blowing down limit is unique. Furthermore, if the solution has finite Morse index, the blowing down limit satisfies the multiplicity one property.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear differential equations and applications 2017, Vol.24 (5)
1. Verfasser: Wang, Kelei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Nonlinear differential equations and applications
container_volume 24
creator Wang, Kelei
description For a solution of the Allen–Cahn equation in R 2 , under the natural linear growth energy bound, we show that the blowing down limit is unique. Furthermore, if the solution has finite Morse index, the blowing down limit satisfies the multiplicity one property.
doi_str_mv 10.1007/s00030-017-0481-7
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_1933265759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1933265759</sourcerecordid><originalsourceid>FETCH-LOGICAL-p717-e56d05bf7397128b93dfb0e5e08c0479b138a619502e8a75103dc045abf00293</originalsourceid><addsrcrecordid>eNpNkEtOwzAQhi0EEqVwAHaWWBvGdhzHy6riJRUhUfYhaSY0JbWL7UgsuQM35CQ4lAWrGen_5qGPkHMOlxxAXwUAkMCAawZZwZk-IBOeCWAGIDtMPQjOjBbimJyEsIEE5tJMyMvSbZF63Fb-LVBnaVwjDdEPqzh4pK6lbWe7iPTB-YC0sw1-0OD6IXbOBhrd78Cs79F-f37Nq7Wl-D5UY5pg-iROyVFb9QHP_uqULG-un-d3bPF4ez-fLdhOp59R5Q2outXSaC6K2simrQEVQrGCTJuay6LKuVEgsKi04iCbFKiqbgGEkVNysd-68-59wBDLjRu8TQdLbqQUudJqpMSeCjvf2Vf0_ygoR4_l3mOZ9JSjx1LLH9QMZb0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933265759</pqid></control><display><type>article</type><title>Some remarks on the structure of finite Morse index solutions to the Allen–Cahn equation in R2</title><source>Springer Online Journals</source><creator>Wang, Kelei</creator><creatorcontrib>Wang, Kelei</creatorcontrib><description>For a solution of the Allen–Cahn equation in R 2 , under the natural linear growth energy bound, we show that the blowing down limit is unique. Furthermore, if the solution has finite Morse index, the blowing down limit satisfies the multiplicity one property.</description><identifier>ISSN: 1021-9722</identifier><identifier>EISSN: 1420-9004</identifier><identifier>DOI: 10.1007/s00030-017-0481-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Blowing ; Mathematics ; Mathematics and Statistics</subject><ispartof>Nonlinear differential equations and applications, 2017, Vol.24 (5)</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Springer International Publishing AG 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p717-e56d05bf7397128b93dfb0e5e08c0479b138a619502e8a75103dc045abf00293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00030-017-0481-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00030-017-0481-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Wang, Kelei</creatorcontrib><title>Some remarks on the structure of finite Morse index solutions to the Allen–Cahn equation in R2</title><title>Nonlinear differential equations and applications</title><addtitle>Nonlinear Differ. Equ. Appl</addtitle><description>For a solution of the Allen–Cahn equation in R 2 , under the natural linear growth energy bound, we show that the blowing down limit is unique. Furthermore, if the solution has finite Morse index, the blowing down limit satisfies the multiplicity one property.</description><subject>Analysis</subject><subject>Blowing</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1021-9722</issn><issn>1420-9004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkEtOwzAQhi0EEqVwAHaWWBvGdhzHy6riJRUhUfYhaSY0JbWL7UgsuQM35CQ4lAWrGen_5qGPkHMOlxxAXwUAkMCAawZZwZk-IBOeCWAGIDtMPQjOjBbimJyEsIEE5tJMyMvSbZF63Fb-LVBnaVwjDdEPqzh4pK6lbWe7iPTB-YC0sw1-0OD6IXbOBhrd78Cs79F-f37Nq7Wl-D5UY5pg-iROyVFb9QHP_uqULG-un-d3bPF4ez-fLdhOp59R5Q2outXSaC6K2simrQEVQrGCTJuay6LKuVEgsKi04iCbFKiqbgGEkVNysd-68-59wBDLjRu8TQdLbqQUudJqpMSeCjvf2Vf0_ygoR4_l3mOZ9JSjx1LLH9QMZb0</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Wang, Kelei</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2017</creationdate><title>Some remarks on the structure of finite Morse index solutions to the Allen–Cahn equation in R2</title><author>Wang, Kelei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p717-e56d05bf7397128b93dfb0e5e08c0479b138a619502e8a75103dc045abf00293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Blowing</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kelei</creatorcontrib><jtitle>Nonlinear differential equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kelei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some remarks on the structure of finite Morse index solutions to the Allen–Cahn equation in R2</atitle><jtitle>Nonlinear differential equations and applications</jtitle><stitle>Nonlinear Differ. Equ. Appl</stitle><date>2017</date><risdate>2017</risdate><volume>24</volume><issue>5</issue><issn>1021-9722</issn><eissn>1420-9004</eissn><abstract>For a solution of the Allen–Cahn equation in R 2 , under the natural linear growth energy bound, we show that the blowing down limit is unique. Furthermore, if the solution has finite Morse index, the blowing down limit satisfies the multiplicity one property.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00030-017-0481-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 1021-9722
ispartof Nonlinear differential equations and applications, 2017, Vol.24 (5)
issn 1021-9722
1420-9004
language eng
recordid cdi_proquest_journals_1933265759
source Springer Online Journals
subjects Analysis
Blowing
Mathematics
Mathematics and Statistics
title Some remarks on the structure of finite Morse index solutions to the Allen–Cahn equation in R2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20remarks%20on%20the%20structure%20of%20finite%20Morse%20index%20solutions%20to%20the%20Allen%E2%80%93Cahn%20equation%20in%20R2&rft.jtitle=Nonlinear%20differential%20equations%20and%20applications&rft.au=Wang,%20Kelei&rft.date=2017&rft.volume=24&rft.issue=5&rft.issn=1021-9722&rft.eissn=1420-9004&rft_id=info:doi/10.1007/s00030-017-0481-7&rft_dat=%3Cproquest_sprin%3E1933265759%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933265759&rft_id=info:pmid/&rfr_iscdi=true