Microscopic studies of polycrystalline nanoparticle growth in free space
•Microscopy techniques to study growth and crystallization of Si nanoparticles (NPs).•NPs classified into various phases based on a growth model.•Size, shape and crystallinity of NPs controlled by changing the plasma ON time.•Single nucleus hypothesis for cauliflower shaped NPs proposed.•This contra...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2017-06, Vol.467, p.137-144 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | |
container_start_page | 137 |
container_title | Journal of crystal growth |
container_volume | 467 |
creator | Mohan, A. Kaiser, M. Verheijen, M.A. Schropp, R.E.I. Rath, J.K. |
description | •Microscopy techniques to study growth and crystallization of Si nanoparticles (NPs).•NPs classified into various phases based on a growth model.•Size, shape and crystallinity of NPs controlled by changing the plasma ON time.•Single nucleus hypothesis for cauliflower shaped NPs proposed.•This contradicts claims of particle agglomeration found in literature.
We have extensively studied by multiple microscopic techniques the growth and crystallization of silicon nanoparticles in pulsed SiH4/Ar plasmas. We observe that the crystallinity of the particles can be tuned from amorphous to crystalline by altering the plasma ON time, tON. Three phases can be identified as a function of tON. Microscopic studies reveal that, in the initial gas phase (phase I) single particles of polycrystalline nature are formed which according to our hypothesis grow out of a single nucleus. The individual crystallites of the polycrystalline particles become bigger crystalline regions which marks the onset of cauliflower shaped particles (phase II). At longer tON (phase III) distinct cauliflower particles are formed by the growth of these crystalline regions by local epitaxy. |
doi_str_mv | 10.1016/j.jcrysgro.2017.03.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1933253782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024817302038</els_id><sourcerecordid>1933253782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-4e9c755d901f0db0eb27a1a67480b950c134d420bf5645ff3189f5334534d3d33</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-CxLw3Dr56sdNWdQVVrzoObTpRFNqU5Ousv-9WVbPXmZgeO8N70fIJYOcASuu-7w3YRffgs85sDIHkYOUR2TBqlJkCoAfk0WaPAMuq1NyFmMPkJwMFmT95Ezw0fjJGRrnbecwUm_p5IfdPnVuhsGNSMdm9FMTZmcGpOnV9_xO3UhtQKRxagyekxPbDBEvfveSvN7fvazW2eb54XF1u8mMVHLOJNamVKqrgVnoWsCWlw1rilJW0NYKDBOykxxaqwqprBWsqq0SQqp0F50QS3J1yJ2C_9xinHXvt2FMLzWrheBKlBVPquKg2peLAa2egvtowk4z0Htqutd_1PSemgahE7VkvDkYMXX4chh0NA5Hg50LaGbdefdfxA-QuHmC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933253782</pqid></control><display><type>article</type><title>Microscopic studies of polycrystalline nanoparticle growth in free space</title><source>Elsevier ScienceDirect Journals</source><creator>Mohan, A. ; Kaiser, M. ; Verheijen, M.A. ; Schropp, R.E.I. ; Rath, J.K.</creator><creatorcontrib>Mohan, A. ; Kaiser, M. ; Verheijen, M.A. ; Schropp, R.E.I. ; Rath, J.K.</creatorcontrib><description>•Microscopy techniques to study growth and crystallization of Si nanoparticles (NPs).•NPs classified into various phases based on a growth model.•Size, shape and crystallinity of NPs controlled by changing the plasma ON time.•Single nucleus hypothesis for cauliflower shaped NPs proposed.•This contradicts claims of particle agglomeration found in literature.
We have extensively studied by multiple microscopic techniques the growth and crystallization of silicon nanoparticles in pulsed SiH4/Ar plasmas. We observe that the crystallinity of the particles can be tuned from amorphous to crystalline by altering the plasma ON time, tON. Three phases can be identified as a function of tON. Microscopic studies reveal that, in the initial gas phase (phase I) single particles of polycrystalline nature are formed which according to our hypothesis grow out of a single nucleus. The individual crystallites of the polycrystalline particles become bigger crystalline regions which marks the onset of cauliflower shaped particles (phase II). At longer tON (phase III) distinct cauliflower particles are formed by the growth of these crystalline regions by local epitaxy.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2017.03.044</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Crystal structure ; A1. Crystallites ; A1. HRTEM (high resolution transmission electron microscopy) ; A1. Nanostructures ; A3. Chemical vapor deposition processes ; Chemical vapor deposition ; Crystal growth ; Crystal structure ; Crystallinity ; Crystallites ; Crystallization ; Epitaxial growth ; Nanoparticles ; Nanostructured materials ; Nuclei ; Plasmas</subject><ispartof>Journal of crystal growth, 2017-06, Vol.467, p.137-144</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-4e9c755d901f0db0eb27a1a67480b950c134d420bf5645ff3189f5334534d3d33</citedby><cites>FETCH-LOGICAL-c454t-4e9c755d901f0db0eb27a1a67480b950c134d420bf5645ff3189f5334534d3d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024817302038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mohan, A.</creatorcontrib><creatorcontrib>Kaiser, M.</creatorcontrib><creatorcontrib>Verheijen, M.A.</creatorcontrib><creatorcontrib>Schropp, R.E.I.</creatorcontrib><creatorcontrib>Rath, J.K.</creatorcontrib><title>Microscopic studies of polycrystalline nanoparticle growth in free space</title><title>Journal of crystal growth</title><description>•Microscopy techniques to study growth and crystallization of Si nanoparticles (NPs).•NPs classified into various phases based on a growth model.•Size, shape and crystallinity of NPs controlled by changing the plasma ON time.•Single nucleus hypothesis for cauliflower shaped NPs proposed.•This contradicts claims of particle agglomeration found in literature.
We have extensively studied by multiple microscopic techniques the growth and crystallization of silicon nanoparticles in pulsed SiH4/Ar plasmas. We observe that the crystallinity of the particles can be tuned from amorphous to crystalline by altering the plasma ON time, tON. Three phases can be identified as a function of tON. Microscopic studies reveal that, in the initial gas phase (phase I) single particles of polycrystalline nature are formed which according to our hypothesis grow out of a single nucleus. The individual crystallites of the polycrystalline particles become bigger crystalline regions which marks the onset of cauliflower shaped particles (phase II). At longer tON (phase III) distinct cauliflower particles are formed by the growth of these crystalline regions by local epitaxy.</description><subject>A1. Crystal structure</subject><subject>A1. Crystallites</subject><subject>A1. HRTEM (high resolution transmission electron microscopy)</subject><subject>A1. Nanostructures</subject><subject>A3. Chemical vapor deposition processes</subject><subject>Chemical vapor deposition</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Epitaxial growth</subject><subject>Nanoparticles</subject><subject>Nanostructured materials</subject><subject>Nuclei</subject><subject>Plasmas</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-CxLw3Dr56sdNWdQVVrzoObTpRFNqU5Ousv-9WVbPXmZgeO8N70fIJYOcASuu-7w3YRffgs85sDIHkYOUR2TBqlJkCoAfk0WaPAMuq1NyFmMPkJwMFmT95Ezw0fjJGRrnbecwUm_p5IfdPnVuhsGNSMdm9FMTZmcGpOnV9_xO3UhtQKRxagyekxPbDBEvfveSvN7fvazW2eb54XF1u8mMVHLOJNamVKqrgVnoWsCWlw1rilJW0NYKDBOykxxaqwqprBWsqq0SQqp0F50QS3J1yJ2C_9xinHXvt2FMLzWrheBKlBVPquKg2peLAa2egvtowk4z0Htqutd_1PSemgahE7VkvDkYMXX4chh0NA5Hg50LaGbdefdfxA-QuHmC</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Mohan, A.</creator><creator>Kaiser, M.</creator><creator>Verheijen, M.A.</creator><creator>Schropp, R.E.I.</creator><creator>Rath, J.K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170601</creationdate><title>Microscopic studies of polycrystalline nanoparticle growth in free space</title><author>Mohan, A. ; Kaiser, M. ; Verheijen, M.A. ; Schropp, R.E.I. ; Rath, J.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-4e9c755d901f0db0eb27a1a67480b950c134d420bf5645ff3189f5334534d3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A1. Crystal structure</topic><topic>A1. Crystallites</topic><topic>A1. HRTEM (high resolution transmission electron microscopy)</topic><topic>A1. Nanostructures</topic><topic>A3. Chemical vapor deposition processes</topic><topic>Chemical vapor deposition</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Epitaxial growth</topic><topic>Nanoparticles</topic><topic>Nanostructured materials</topic><topic>Nuclei</topic><topic>Plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohan, A.</creatorcontrib><creatorcontrib>Kaiser, M.</creatorcontrib><creatorcontrib>Verheijen, M.A.</creatorcontrib><creatorcontrib>Schropp, R.E.I.</creatorcontrib><creatorcontrib>Rath, J.K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohan, A.</au><au>Kaiser, M.</au><au>Verheijen, M.A.</au><au>Schropp, R.E.I.</au><au>Rath, J.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic studies of polycrystalline nanoparticle growth in free space</atitle><jtitle>Journal of crystal growth</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>467</volume><spage>137</spage><epage>144</epage><pages>137-144</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•Microscopy techniques to study growth and crystallization of Si nanoparticles (NPs).•NPs classified into various phases based on a growth model.•Size, shape and crystallinity of NPs controlled by changing the plasma ON time.•Single nucleus hypothesis for cauliflower shaped NPs proposed.•This contradicts claims of particle agglomeration found in literature.
We have extensively studied by multiple microscopic techniques the growth and crystallization of silicon nanoparticles in pulsed SiH4/Ar plasmas. We observe that the crystallinity of the particles can be tuned from amorphous to crystalline by altering the plasma ON time, tON. Three phases can be identified as a function of tON. Microscopic studies reveal that, in the initial gas phase (phase I) single particles of polycrystalline nature are formed which according to our hypothesis grow out of a single nucleus. The individual crystallites of the polycrystalline particles become bigger crystalline regions which marks the onset of cauliflower shaped particles (phase II). At longer tON (phase III) distinct cauliflower particles are formed by the growth of these crystalline regions by local epitaxy.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2017.03.044</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2017-06, Vol.467, p.137-144 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_journals_1933253782 |
source | Elsevier ScienceDirect Journals |
subjects | A1. Crystal structure A1. Crystallites A1. HRTEM (high resolution transmission electron microscopy) A1. Nanostructures A3. Chemical vapor deposition processes Chemical vapor deposition Crystal growth Crystal structure Crystallinity Crystallites Crystallization Epitaxial growth Nanoparticles Nanostructured materials Nuclei Plasmas |
title | Microscopic studies of polycrystalline nanoparticle growth in free space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20studies%20of%20polycrystalline%20nanoparticle%20growth%20in%20free%20space&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Mohan,%20A.&rft.date=2017-06-01&rft.volume=467&rft.spage=137&rft.epage=144&rft.pages=137-144&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2017.03.044&rft_dat=%3Cproquest_cross%3E1933253782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933253782&rft_id=info:pmid/&rft_els_id=S0022024817302038&rfr_iscdi=true |