Microscopic studies of polycrystalline nanoparticle growth in free space

•Microscopy techniques to study growth and crystallization of Si nanoparticles (NPs).•NPs classified into various phases based on a growth model.•Size, shape and crystallinity of NPs controlled by changing the plasma ON time.•Single nucleus hypothesis for cauliflower shaped NPs proposed.•This contra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2017-06, Vol.467, p.137-144
Hauptverfasser: Mohan, A., Kaiser, M., Verheijen, M.A., Schropp, R.E.I., Rath, J.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue
container_start_page 137
container_title Journal of crystal growth
container_volume 467
creator Mohan, A.
Kaiser, M.
Verheijen, M.A.
Schropp, R.E.I.
Rath, J.K.
description •Microscopy techniques to study growth and crystallization of Si nanoparticles (NPs).•NPs classified into various phases based on a growth model.•Size, shape and crystallinity of NPs controlled by changing the plasma ON time.•Single nucleus hypothesis for cauliflower shaped NPs proposed.•This contradicts claims of particle agglomeration found in literature. We have extensively studied by multiple microscopic techniques the growth and crystallization of silicon nanoparticles in pulsed SiH4/Ar plasmas. We observe that the crystallinity of the particles can be tuned from amorphous to crystalline by altering the plasma ON time, tON. Three phases can be identified as a function of tON. Microscopic studies reveal that, in the initial gas phase (phase I) single particles of polycrystalline nature are formed which according to our hypothesis grow out of a single nucleus. The individual crystallites of the polycrystalline particles become bigger crystalline regions which marks the onset of cauliflower shaped particles (phase II). At longer tON (phase III) distinct cauliflower particles are formed by the growth of these crystalline regions by local epitaxy.
doi_str_mv 10.1016/j.jcrysgro.2017.03.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1933253782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024817302038</els_id><sourcerecordid>1933253782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-4e9c755d901f0db0eb27a1a67480b950c134d420bf5645ff3189f5334534d3d33</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-CxLw3Dr56sdNWdQVVrzoObTpRFNqU5Ousv-9WVbPXmZgeO8N70fIJYOcASuu-7w3YRffgs85sDIHkYOUR2TBqlJkCoAfk0WaPAMuq1NyFmMPkJwMFmT95Ezw0fjJGRrnbecwUm_p5IfdPnVuhsGNSMdm9FMTZmcGpOnV9_xO3UhtQKRxagyekxPbDBEvfveSvN7fvazW2eb54XF1u8mMVHLOJNamVKqrgVnoWsCWlw1rilJW0NYKDBOykxxaqwqprBWsqq0SQqp0F50QS3J1yJ2C_9xinHXvt2FMLzWrheBKlBVPquKg2peLAa2egvtowk4z0Htqutd_1PSemgahE7VkvDkYMXX4chh0NA5Hg50LaGbdefdfxA-QuHmC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933253782</pqid></control><display><type>article</type><title>Microscopic studies of polycrystalline nanoparticle growth in free space</title><source>Elsevier ScienceDirect Journals</source><creator>Mohan, A. ; Kaiser, M. ; Verheijen, M.A. ; Schropp, R.E.I. ; Rath, J.K.</creator><creatorcontrib>Mohan, A. ; Kaiser, M. ; Verheijen, M.A. ; Schropp, R.E.I. ; Rath, J.K.</creatorcontrib><description>•Microscopy techniques to study growth and crystallization of Si nanoparticles (NPs).•NPs classified into various phases based on a growth model.•Size, shape and crystallinity of NPs controlled by changing the plasma ON time.•Single nucleus hypothesis for cauliflower shaped NPs proposed.•This contradicts claims of particle agglomeration found in literature. We have extensively studied by multiple microscopic techniques the growth and crystallization of silicon nanoparticles in pulsed SiH4/Ar plasmas. We observe that the crystallinity of the particles can be tuned from amorphous to crystalline by altering the plasma ON time, tON. Three phases can be identified as a function of tON. Microscopic studies reveal that, in the initial gas phase (phase I) single particles of polycrystalline nature are formed which according to our hypothesis grow out of a single nucleus. The individual crystallites of the polycrystalline particles become bigger crystalline regions which marks the onset of cauliflower shaped particles (phase II). At longer tON (phase III) distinct cauliflower particles are formed by the growth of these crystalline regions by local epitaxy.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2017.03.044</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Crystal structure ; A1. Crystallites ; A1. HRTEM (high resolution transmission electron microscopy) ; A1. Nanostructures ; A3. Chemical vapor deposition processes ; Chemical vapor deposition ; Crystal growth ; Crystal structure ; Crystallinity ; Crystallites ; Crystallization ; Epitaxial growth ; Nanoparticles ; Nanostructured materials ; Nuclei ; Plasmas</subject><ispartof>Journal of crystal growth, 2017-06, Vol.467, p.137-144</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-4e9c755d901f0db0eb27a1a67480b950c134d420bf5645ff3189f5334534d3d33</citedby><cites>FETCH-LOGICAL-c454t-4e9c755d901f0db0eb27a1a67480b950c134d420bf5645ff3189f5334534d3d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024817302038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mohan, A.</creatorcontrib><creatorcontrib>Kaiser, M.</creatorcontrib><creatorcontrib>Verheijen, M.A.</creatorcontrib><creatorcontrib>Schropp, R.E.I.</creatorcontrib><creatorcontrib>Rath, J.K.</creatorcontrib><title>Microscopic studies of polycrystalline nanoparticle growth in free space</title><title>Journal of crystal growth</title><description>•Microscopy techniques to study growth and crystallization of Si nanoparticles (NPs).•NPs classified into various phases based on a growth model.•Size, shape and crystallinity of NPs controlled by changing the plasma ON time.•Single nucleus hypothesis for cauliflower shaped NPs proposed.•This contradicts claims of particle agglomeration found in literature. We have extensively studied by multiple microscopic techniques the growth and crystallization of silicon nanoparticles in pulsed SiH4/Ar plasmas. We observe that the crystallinity of the particles can be tuned from amorphous to crystalline by altering the plasma ON time, tON. Three phases can be identified as a function of tON. Microscopic studies reveal that, in the initial gas phase (phase I) single particles of polycrystalline nature are formed which according to our hypothesis grow out of a single nucleus. The individual crystallites of the polycrystalline particles become bigger crystalline regions which marks the onset of cauliflower shaped particles (phase II). At longer tON (phase III) distinct cauliflower particles are formed by the growth of these crystalline regions by local epitaxy.</description><subject>A1. Crystal structure</subject><subject>A1. Crystallites</subject><subject>A1. HRTEM (high resolution transmission electron microscopy)</subject><subject>A1. Nanostructures</subject><subject>A3. Chemical vapor deposition processes</subject><subject>Chemical vapor deposition</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Epitaxial growth</subject><subject>Nanoparticles</subject><subject>Nanostructured materials</subject><subject>Nuclei</subject><subject>Plasmas</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-CxLw3Dr56sdNWdQVVrzoObTpRFNqU5Ousv-9WVbPXmZgeO8N70fIJYOcASuu-7w3YRffgs85sDIHkYOUR2TBqlJkCoAfk0WaPAMuq1NyFmMPkJwMFmT95Ezw0fjJGRrnbecwUm_p5IfdPnVuhsGNSMdm9FMTZmcGpOnV9_xO3UhtQKRxagyekxPbDBEvfveSvN7fvazW2eb54XF1u8mMVHLOJNamVKqrgVnoWsCWlw1rilJW0NYKDBOykxxaqwqprBWsqq0SQqp0F50QS3J1yJ2C_9xinHXvt2FMLzWrheBKlBVPquKg2peLAa2egvtowk4z0Htqutd_1PSemgahE7VkvDkYMXX4chh0NA5Hg50LaGbdefdfxA-QuHmC</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Mohan, A.</creator><creator>Kaiser, M.</creator><creator>Verheijen, M.A.</creator><creator>Schropp, R.E.I.</creator><creator>Rath, J.K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170601</creationdate><title>Microscopic studies of polycrystalline nanoparticle growth in free space</title><author>Mohan, A. ; Kaiser, M. ; Verheijen, M.A. ; Schropp, R.E.I. ; Rath, J.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-4e9c755d901f0db0eb27a1a67480b950c134d420bf5645ff3189f5334534d3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A1. Crystal structure</topic><topic>A1. Crystallites</topic><topic>A1. HRTEM (high resolution transmission electron microscopy)</topic><topic>A1. Nanostructures</topic><topic>A3. Chemical vapor deposition processes</topic><topic>Chemical vapor deposition</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Epitaxial growth</topic><topic>Nanoparticles</topic><topic>Nanostructured materials</topic><topic>Nuclei</topic><topic>Plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohan, A.</creatorcontrib><creatorcontrib>Kaiser, M.</creatorcontrib><creatorcontrib>Verheijen, M.A.</creatorcontrib><creatorcontrib>Schropp, R.E.I.</creatorcontrib><creatorcontrib>Rath, J.K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohan, A.</au><au>Kaiser, M.</au><au>Verheijen, M.A.</au><au>Schropp, R.E.I.</au><au>Rath, J.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic studies of polycrystalline nanoparticle growth in free space</atitle><jtitle>Journal of crystal growth</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>467</volume><spage>137</spage><epage>144</epage><pages>137-144</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•Microscopy techniques to study growth and crystallization of Si nanoparticles (NPs).•NPs classified into various phases based on a growth model.•Size, shape and crystallinity of NPs controlled by changing the plasma ON time.•Single nucleus hypothesis for cauliflower shaped NPs proposed.•This contradicts claims of particle agglomeration found in literature. We have extensively studied by multiple microscopic techniques the growth and crystallization of silicon nanoparticles in pulsed SiH4/Ar plasmas. We observe that the crystallinity of the particles can be tuned from amorphous to crystalline by altering the plasma ON time, tON. Three phases can be identified as a function of tON. Microscopic studies reveal that, in the initial gas phase (phase I) single particles of polycrystalline nature are formed which according to our hypothesis grow out of a single nucleus. The individual crystallites of the polycrystalline particles become bigger crystalline regions which marks the onset of cauliflower shaped particles (phase II). At longer tON (phase III) distinct cauliflower particles are formed by the growth of these crystalline regions by local epitaxy.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2017.03.044</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2017-06, Vol.467, p.137-144
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_journals_1933253782
source Elsevier ScienceDirect Journals
subjects A1. Crystal structure
A1. Crystallites
A1. HRTEM (high resolution transmission electron microscopy)
A1. Nanostructures
A3. Chemical vapor deposition processes
Chemical vapor deposition
Crystal growth
Crystal structure
Crystallinity
Crystallites
Crystallization
Epitaxial growth
Nanoparticles
Nanostructured materials
Nuclei
Plasmas
title Microscopic studies of polycrystalline nanoparticle growth in free space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20studies%20of%20polycrystalline%20nanoparticle%20growth%20in%20free%20space&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Mohan,%20A.&rft.date=2017-06-01&rft.volume=467&rft.spage=137&rft.epage=144&rft.pages=137-144&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2017.03.044&rft_dat=%3Cproquest_cross%3E1933253782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933253782&rft_id=info:pmid/&rft_els_id=S0022024817302038&rfr_iscdi=true