GV/cm scale laser-magnetic resonant acceleration in vacuum
Resonant acceleration of electrons by a laser in the background of an extra longitudinal magnetic field is investigated analytically and numerically. The resonant condition is independent of laser intensity, and when satisfied, the energy gain is proportional to $a_0^2 $ and the square of phase diff...
Gespeichert in:
Veröffentlicht in: | Laser and particle beams 2017-09, Vol.35 (3), p.520-527 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 527 |
---|---|
container_issue | 3 |
container_start_page | 520 |
container_title | Laser and particle beams |
container_volume | 35 |
creator | Zhang, Y. Jiao, J.-L. Zhang, B. Zhang, Z.-M. Gu, Y.-Q. |
description | Resonant acceleration of electrons by a laser in the background of an extra longitudinal magnetic field is investigated analytically and numerically. The resonant condition is independent of laser intensity, and when satisfied, the energy gain is proportional to
$a_0^2 $
and the square of phase difference. This process is mainly limited by the magnitude and spatial size of the extra magnetic field. Under the laboratory conditions, simulation results show that a monoenergetic and collimated electron bunch can still be obtained in ~ GV/cm scale, which sheds a light on the vacuum table-top laser-driven electron accelerators. |
doi_str_mv | 10.1017/S0263034617000507 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1933201851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263034617000507</cupid><sourcerecordid>1933201851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-5a25dc48d76cc97dfe91d84b10c4708447213d360f1c774a49a1042d9027646c3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRMFZ_gLuA69h7ZyYziTspWoWCCx-4C9M7k5KSR51JBP99E9qFIK7u4nzfuXAYu0a4RUA9fwWuBAipUANACvqERShVnmQgPk9ZNMXJlJ-zixC2E5MKHrG75cecmjiQqV1cm-B80phN6_qKYu9C15q2jw2Rq503fdW1cdXG34aGoblkZ6Wpg7s63hl7f3x4Wzwlq5fl8-J-lZBQ0Cep4aklmVmtiHJtS5ejzeQagaSGTErNUdgRLZG0lkbmBkFymwPXSioSM3Zz6N357mtwoS-23eDb8WWBuRAcMEtxpPBAke9C8K4sdr5qjP8pEIppouLPRKMjjo5p1r6yG_er-l9rDw86ZdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933201851</pqid></control><display><type>article</type><title>GV/cm scale laser-magnetic resonant acceleration in vacuum</title><source>Cambridge University Press Journals Complete</source><creator>Zhang, Y. ; Jiao, J.-L. ; Zhang, B. ; Zhang, Z.-M. ; Gu, Y.-Q.</creator><creatorcontrib>Zhang, Y. ; Jiao, J.-L. ; Zhang, B. ; Zhang, Z.-M. ; Gu, Y.-Q.</creatorcontrib><description>Resonant acceleration of electrons by a laser in the background of an extra longitudinal magnetic field is investigated analytically and numerically. The resonant condition is independent of laser intensity, and when satisfied, the energy gain is proportional to
$a_0^2 $
and the square of phase difference. This process is mainly limited by the magnitude and spatial size of the extra magnetic field. Under the laboratory conditions, simulation results show that a monoenergetic and collimated electron bunch can still be obtained in ~ GV/cm scale, which sheds a light on the vacuum table-top laser-driven electron accelerators.</description><identifier>ISSN: 0263-0346</identifier><identifier>EISSN: 1469-803X</identifier><identifier>DOI: 10.1017/S0263034617000507</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Acceleration ; Accelerators ; Collimation ; Computer simulation ; Electron accelerators ; Laboratories ; Lasers ; Magnetic fields ; Phase shift ; Physics ; Plasma ; Relativism ; Symmetry</subject><ispartof>Laser and particle beams, 2017-09, Vol.35 (3), p.520-527</ispartof><rights>Copyright © Cambridge University Press 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-5a25dc48d76cc97dfe91d84b10c4708447213d360f1c774a49a1042d9027646c3</citedby><cites>FETCH-LOGICAL-c360t-5a25dc48d76cc97dfe91d84b10c4708447213d360f1c774a49a1042d9027646c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263034617000507/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Jiao, J.-L.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Zhang, Z.-M.</creatorcontrib><creatorcontrib>Gu, Y.-Q.</creatorcontrib><title>GV/cm scale laser-magnetic resonant acceleration in vacuum</title><title>Laser and particle beams</title><addtitle>Laser Part. Beams</addtitle><description>Resonant acceleration of electrons by a laser in the background of an extra longitudinal magnetic field is investigated analytically and numerically. The resonant condition is independent of laser intensity, and when satisfied, the energy gain is proportional to
$a_0^2 $
and the square of phase difference. This process is mainly limited by the magnitude and spatial size of the extra magnetic field. Under the laboratory conditions, simulation results show that a monoenergetic and collimated electron bunch can still be obtained in ~ GV/cm scale, which sheds a light on the vacuum table-top laser-driven electron accelerators.</description><subject>Acceleration</subject><subject>Accelerators</subject><subject>Collimation</subject><subject>Computer simulation</subject><subject>Electron accelerators</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Phase shift</subject><subject>Physics</subject><subject>Plasma</subject><subject>Relativism</subject><subject>Symmetry</subject><issn>0263-0346</issn><issn>1469-803X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLw0AUhQdRMFZ_gLuA69h7ZyYziTspWoWCCx-4C9M7k5KSR51JBP99E9qFIK7u4nzfuXAYu0a4RUA9fwWuBAipUANACvqERShVnmQgPk9ZNMXJlJ-zixC2E5MKHrG75cecmjiQqV1cm-B80phN6_qKYu9C15q2jw2Rq503fdW1cdXG34aGoblkZ6Wpg7s63hl7f3x4Wzwlq5fl8-J-lZBQ0Cep4aklmVmtiHJtS5ejzeQagaSGTErNUdgRLZG0lkbmBkFymwPXSioSM3Zz6N357mtwoS-23eDb8WWBuRAcMEtxpPBAke9C8K4sdr5qjP8pEIppouLPRKMjjo5p1r6yG_er-l9rDw86ZdY</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Zhang, Y.</creator><creator>Jiao, J.-L.</creator><creator>Zhang, B.</creator><creator>Zhang, Z.-M.</creator><creator>Gu, Y.-Q.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201709</creationdate><title>GV/cm scale laser-magnetic resonant acceleration in vacuum</title><author>Zhang, Y. ; Jiao, J.-L. ; Zhang, B. ; Zhang, Z.-M. ; Gu, Y.-Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-5a25dc48d76cc97dfe91d84b10c4708447213d360f1c774a49a1042d9027646c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Accelerators</topic><topic>Collimation</topic><topic>Computer simulation</topic><topic>Electron accelerators</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Phase shift</topic><topic>Physics</topic><topic>Plasma</topic><topic>Relativism</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Jiao, J.-L.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Zhang, Z.-M.</creatorcontrib><creatorcontrib>Gu, Y.-Q.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Laser and particle beams</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Y.</au><au>Jiao, J.-L.</au><au>Zhang, B.</au><au>Zhang, Z.-M.</au><au>Gu, Y.-Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GV/cm scale laser-magnetic resonant acceleration in vacuum</atitle><jtitle>Laser and particle beams</jtitle><addtitle>Laser Part. Beams</addtitle><date>2017-09</date><risdate>2017</risdate><volume>35</volume><issue>3</issue><spage>520</spage><epage>527</epage><pages>520-527</pages><issn>0263-0346</issn><eissn>1469-803X</eissn><abstract>Resonant acceleration of electrons by a laser in the background of an extra longitudinal magnetic field is investigated analytically and numerically. The resonant condition is independent of laser intensity, and when satisfied, the energy gain is proportional to
$a_0^2 $
and the square of phase difference. This process is mainly limited by the magnitude and spatial size of the extra magnetic field. Under the laboratory conditions, simulation results show that a monoenergetic and collimated electron bunch can still be obtained in ~ GV/cm scale, which sheds a light on the vacuum table-top laser-driven electron accelerators.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263034617000507</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-0346 |
ispartof | Laser and particle beams, 2017-09, Vol.35 (3), p.520-527 |
issn | 0263-0346 1469-803X |
language | eng |
recordid | cdi_proquest_journals_1933201851 |
source | Cambridge University Press Journals Complete |
subjects | Acceleration Accelerators Collimation Computer simulation Electron accelerators Laboratories Lasers Magnetic fields Phase shift Physics Plasma Relativism Symmetry |
title | GV/cm scale laser-magnetic resonant acceleration in vacuum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GV/cm%20scale%20laser-magnetic%20resonant%20acceleration%20in%20vacuum&rft.jtitle=Laser%20and%20particle%20beams&rft.au=Zhang,%20Y.&rft.date=2017-09&rft.volume=35&rft.issue=3&rft.spage=520&rft.epage=527&rft.pages=520-527&rft.issn=0263-0346&rft.eissn=1469-803X&rft_id=info:doi/10.1017/S0263034617000507&rft_dat=%3Cproquest_cross%3E1933201851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933201851&rft_id=info:pmid/&rft_cupid=10_1017_S0263034617000507&rfr_iscdi=true |