GV/cm scale laser-magnetic resonant acceleration in vacuum

Resonant acceleration of electrons by a laser in the background of an extra longitudinal magnetic field is investigated analytically and numerically. The resonant condition is independent of laser intensity, and when satisfied, the energy gain is proportional to $a_0^2 $ and the square of phase diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser and particle beams 2017-09, Vol.35 (3), p.520-527
Hauptverfasser: Zhang, Y., Jiao, J.-L., Zhang, B., Zhang, Z.-M., Gu, Y.-Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 527
container_issue 3
container_start_page 520
container_title Laser and particle beams
container_volume 35
creator Zhang, Y.
Jiao, J.-L.
Zhang, B.
Zhang, Z.-M.
Gu, Y.-Q.
description Resonant acceleration of electrons by a laser in the background of an extra longitudinal magnetic field is investigated analytically and numerically. The resonant condition is independent of laser intensity, and when satisfied, the energy gain is proportional to $a_0^2 $ and the square of phase difference. This process is mainly limited by the magnitude and spatial size of the extra magnetic field. Under the laboratory conditions, simulation results show that a monoenergetic and collimated electron bunch can still be obtained in ~ GV/cm scale, which sheds a light on the vacuum table-top laser-driven electron accelerators.
doi_str_mv 10.1017/S0263034617000507
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1933201851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263034617000507</cupid><sourcerecordid>1933201851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-5a25dc48d76cc97dfe91d84b10c4708447213d360f1c774a49a1042d9027646c3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRMFZ_gLuA69h7ZyYziTspWoWCCx-4C9M7k5KSR51JBP99E9qFIK7u4nzfuXAYu0a4RUA9fwWuBAipUANACvqERShVnmQgPk9ZNMXJlJ-zixC2E5MKHrG75cecmjiQqV1cm-B80phN6_qKYu9C15q2jw2Rq503fdW1cdXG34aGoblkZ6Wpg7s63hl7f3x4Wzwlq5fl8-J-lZBQ0Cep4aklmVmtiHJtS5ejzeQagaSGTErNUdgRLZG0lkbmBkFymwPXSioSM3Zz6N357mtwoS-23eDb8WWBuRAcMEtxpPBAke9C8K4sdr5qjP8pEIppouLPRKMjjo5p1r6yG_er-l9rDw86ZdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933201851</pqid></control><display><type>article</type><title>GV/cm scale laser-magnetic resonant acceleration in vacuum</title><source>Cambridge University Press Journals Complete</source><creator>Zhang, Y. ; Jiao, J.-L. ; Zhang, B. ; Zhang, Z.-M. ; Gu, Y.-Q.</creator><creatorcontrib>Zhang, Y. ; Jiao, J.-L. ; Zhang, B. ; Zhang, Z.-M. ; Gu, Y.-Q.</creatorcontrib><description>Resonant acceleration of electrons by a laser in the background of an extra longitudinal magnetic field is investigated analytically and numerically. The resonant condition is independent of laser intensity, and when satisfied, the energy gain is proportional to $a_0^2 $ and the square of phase difference. This process is mainly limited by the magnitude and spatial size of the extra magnetic field. Under the laboratory conditions, simulation results show that a monoenergetic and collimated electron bunch can still be obtained in ~ GV/cm scale, which sheds a light on the vacuum table-top laser-driven electron accelerators.</description><identifier>ISSN: 0263-0346</identifier><identifier>EISSN: 1469-803X</identifier><identifier>DOI: 10.1017/S0263034617000507</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Acceleration ; Accelerators ; Collimation ; Computer simulation ; Electron accelerators ; Laboratories ; Lasers ; Magnetic fields ; Phase shift ; Physics ; Plasma ; Relativism ; Symmetry</subject><ispartof>Laser and particle beams, 2017-09, Vol.35 (3), p.520-527</ispartof><rights>Copyright © Cambridge University Press 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-5a25dc48d76cc97dfe91d84b10c4708447213d360f1c774a49a1042d9027646c3</citedby><cites>FETCH-LOGICAL-c360t-5a25dc48d76cc97dfe91d84b10c4708447213d360f1c774a49a1042d9027646c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263034617000507/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Jiao, J.-L.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Zhang, Z.-M.</creatorcontrib><creatorcontrib>Gu, Y.-Q.</creatorcontrib><title>GV/cm scale laser-magnetic resonant acceleration in vacuum</title><title>Laser and particle beams</title><addtitle>Laser Part. Beams</addtitle><description>Resonant acceleration of electrons by a laser in the background of an extra longitudinal magnetic field is investigated analytically and numerically. The resonant condition is independent of laser intensity, and when satisfied, the energy gain is proportional to $a_0^2 $ and the square of phase difference. This process is mainly limited by the magnitude and spatial size of the extra magnetic field. Under the laboratory conditions, simulation results show that a monoenergetic and collimated electron bunch can still be obtained in ~ GV/cm scale, which sheds a light on the vacuum table-top laser-driven electron accelerators.</description><subject>Acceleration</subject><subject>Accelerators</subject><subject>Collimation</subject><subject>Computer simulation</subject><subject>Electron accelerators</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Phase shift</subject><subject>Physics</subject><subject>Plasma</subject><subject>Relativism</subject><subject>Symmetry</subject><issn>0263-0346</issn><issn>1469-803X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLw0AUhQdRMFZ_gLuA69h7ZyYziTspWoWCCx-4C9M7k5KSR51JBP99E9qFIK7u4nzfuXAYu0a4RUA9fwWuBAipUANACvqERShVnmQgPk9ZNMXJlJ-zixC2E5MKHrG75cecmjiQqV1cm-B80phN6_qKYu9C15q2jw2Rq503fdW1cdXG34aGoblkZ6Wpg7s63hl7f3x4Wzwlq5fl8-J-lZBQ0Cep4aklmVmtiHJtS5ejzeQagaSGTErNUdgRLZG0lkbmBkFymwPXSioSM3Zz6N357mtwoS-23eDb8WWBuRAcMEtxpPBAke9C8K4sdr5qjP8pEIppouLPRKMjjo5p1r6yG_er-l9rDw86ZdY</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Zhang, Y.</creator><creator>Jiao, J.-L.</creator><creator>Zhang, B.</creator><creator>Zhang, Z.-M.</creator><creator>Gu, Y.-Q.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201709</creationdate><title>GV/cm scale laser-magnetic resonant acceleration in vacuum</title><author>Zhang, Y. ; Jiao, J.-L. ; Zhang, B. ; Zhang, Z.-M. ; Gu, Y.-Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-5a25dc48d76cc97dfe91d84b10c4708447213d360f1c774a49a1042d9027646c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Accelerators</topic><topic>Collimation</topic><topic>Computer simulation</topic><topic>Electron accelerators</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Phase shift</topic><topic>Physics</topic><topic>Plasma</topic><topic>Relativism</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Jiao, J.-L.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Zhang, Z.-M.</creatorcontrib><creatorcontrib>Gu, Y.-Q.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Laser and particle beams</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Y.</au><au>Jiao, J.-L.</au><au>Zhang, B.</au><au>Zhang, Z.-M.</au><au>Gu, Y.-Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GV/cm scale laser-magnetic resonant acceleration in vacuum</atitle><jtitle>Laser and particle beams</jtitle><addtitle>Laser Part. Beams</addtitle><date>2017-09</date><risdate>2017</risdate><volume>35</volume><issue>3</issue><spage>520</spage><epage>527</epage><pages>520-527</pages><issn>0263-0346</issn><eissn>1469-803X</eissn><abstract>Resonant acceleration of electrons by a laser in the background of an extra longitudinal magnetic field is investigated analytically and numerically. The resonant condition is independent of laser intensity, and when satisfied, the energy gain is proportional to $a_0^2 $ and the square of phase difference. This process is mainly limited by the magnitude and spatial size of the extra magnetic field. Under the laboratory conditions, simulation results show that a monoenergetic and collimated electron bunch can still be obtained in ~ GV/cm scale, which sheds a light on the vacuum table-top laser-driven electron accelerators.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263034617000507</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-0346
ispartof Laser and particle beams, 2017-09, Vol.35 (3), p.520-527
issn 0263-0346
1469-803X
language eng
recordid cdi_proquest_journals_1933201851
source Cambridge University Press Journals Complete
subjects Acceleration
Accelerators
Collimation
Computer simulation
Electron accelerators
Laboratories
Lasers
Magnetic fields
Phase shift
Physics
Plasma
Relativism
Symmetry
title GV/cm scale laser-magnetic resonant acceleration in vacuum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GV/cm%20scale%20laser-magnetic%20resonant%20acceleration%20in%20vacuum&rft.jtitle=Laser%20and%20particle%20beams&rft.au=Zhang,%20Y.&rft.date=2017-09&rft.volume=35&rft.issue=3&rft.spage=520&rft.epage=527&rft.pages=520-527&rft.issn=0263-0346&rft.eissn=1469-803X&rft_id=info:doi/10.1017/S0263034617000507&rft_dat=%3Cproquest_cross%3E1933201851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933201851&rft_id=info:pmid/&rft_cupid=10_1017_S0263034617000507&rfr_iscdi=true