Atomistic simulations of solidification process in B2-LiPb solid(001)-liquid system
•The effect of solid-liquid interface on the solidification of alloy was studied in detail.•Nonequilibrium concentration point defects were detected in the solidified crystal.•The formation of dominant point defects was dominated by atomic defect formation energy.•The moving velocity of solid-liquid...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2017-07, Vol.470, p.113-121 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | |
container_start_page | 113 |
container_title | Journal of crystal growth |
container_volume | 470 |
creator | Xu, Chao Gan, Xianglai Meng, Xiancai Xiao, Shifang Deng, Huiqiu Li, Xiaofan Hu, Wangyu |
description | •The effect of solid-liquid interface on the solidification of alloy was studied in detail.•Nonequilibrium concentration point defects were detected in the solidified crystal.•The formation of dominant point defects was dominated by atomic defect formation energy.•The moving velocity of solid-liquid interface in our case increased with thermostat undercooling degree.
Li-Pb alloy is considered as a candidate for a blanket material in fusion reactors for its excellent physical and chemical properties. In this work, the solidification process in the B2-LiPb solid(001)-liquid system is studied using molecular dynamics (MD) simulations. The results indicate that the liquid phase atoms near the solid-liquid interface separate according to the crystal structure, and the separated atoms constitute (001) crystal planes through an ordering arrangement, which induces the B2-LiPb crystal to grow layer by layer. The velocity of moving solid-liquid interface in our case increases with the degree of thermostat undercooling. Nonequilibrium concentrations of point defects and a misshapen region are observed in the finally solidified crystal. The formation of the dominant point defect is dominated by defect formation energy. Additionally, Pb atoms are enriched in the misshapen region due to the formation of nonequilibrium concentrations of point defects. |
doi_str_mv | 10.1016/j.jcrysgro.2017.04.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932353874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024817302531</els_id><sourcerecordid>1932353874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-5604da1be94b2f107986afaf7c159b3c9cdd2eff0c1ca3d678b4c3c0dd7aed933</originalsourceid><addsrcrecordid>eNqFkElLxEAQhRtRcBz9CxLwoofE6iXbTR3cYEBBPTedXqRDkp7pToT59_YYPXupguK9V1UfQucYMgy4uG6zVvpd-PQuI4DLDFgGhB2gBa5KmuYA5BAtYiVpHFfH6CSEFiA6MSzQ2-3oehtGK5Ng-6kTo3VDSJxJguusssbKn1Gy8U7qEBI7JHckXdvXZlZcxqSrtLPbyaok7MKo-1N0ZEQX9NlvX6KPh_v31VO6fnl8Xt2uU0kZjGleAFMCN7pmDTEYyroqhBGmlDivGyprqRTRxoDEUlBVlFXDJJWgVCm0qildoos5N962nXQYeesmP8SVHNeU0JxWJYuqYlZJ70Lw2vCNt73wO46B7wHylv8B5HuAHBiPpKLxZjbq-MOX1Z4HafUgtbJey5ErZ_-L-AZG2n36</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932353874</pqid></control><display><type>article</type><title>Atomistic simulations of solidification process in B2-LiPb solid(001)-liquid system</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Chao ; Gan, Xianglai ; Meng, Xiancai ; Xiao, Shifang ; Deng, Huiqiu ; Li, Xiaofan ; Hu, Wangyu</creator><creatorcontrib>Xu, Chao ; Gan, Xianglai ; Meng, Xiancai ; Xiao, Shifang ; Deng, Huiqiu ; Li, Xiaofan ; Hu, Wangyu</creatorcontrib><description>•The effect of solid-liquid interface on the solidification of alloy was studied in detail.•Nonequilibrium concentration point defects were detected in the solidified crystal.•The formation of dominant point defects was dominated by atomic defect formation energy.•The moving velocity of solid-liquid interface in our case increased with thermostat undercooling degree.
Li-Pb alloy is considered as a candidate for a blanket material in fusion reactors for its excellent physical and chemical properties. In this work, the solidification process in the B2-LiPb solid(001)-liquid system is studied using molecular dynamics (MD) simulations. The results indicate that the liquid phase atoms near the solid-liquid interface separate according to the crystal structure, and the separated atoms constitute (001) crystal planes through an ordering arrangement, which induces the B2-LiPb crystal to grow layer by layer. The velocity of moving solid-liquid interface in our case increases with the degree of thermostat undercooling. Nonequilibrium concentrations of point defects and a misshapen region are observed in the finally solidified crystal. The formation of the dominant point defect is dominated by defect formation energy. Additionally, Pb atoms are enriched in the misshapen region due to the formation of nonequilibrium concentrations of point defects.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2017.04.024</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Computer simulation ; A1. Interfaces ; A1. Point defect ; A1. Solidification ; A2. Growth from melt ; Alloy solidification ; Atomic structure ; B1. Alloys ; Chemical properties ; Computer simulation ; Crystal defects ; Crystal structure ; Energy of formation ; Fusion reactors ; Interfaces ; Molecular dynamics ; Planes ; Point defects ; Reactors ; Solidification ; Supercooling</subject><ispartof>Journal of crystal growth, 2017-07, Vol.470, p.113-121</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Jul 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-5604da1be94b2f107986afaf7c159b3c9cdd2eff0c1ca3d678b4c3c0dd7aed933</citedby><cites>FETCH-LOGICAL-c340t-5604da1be94b2f107986afaf7c159b3c9cdd2eff0c1ca3d678b4c3c0dd7aed933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2017.04.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Gan, Xianglai</creatorcontrib><creatorcontrib>Meng, Xiancai</creatorcontrib><creatorcontrib>Xiao, Shifang</creatorcontrib><creatorcontrib>Deng, Huiqiu</creatorcontrib><creatorcontrib>Li, Xiaofan</creatorcontrib><creatorcontrib>Hu, Wangyu</creatorcontrib><title>Atomistic simulations of solidification process in B2-LiPb solid(001)-liquid system</title><title>Journal of crystal growth</title><description>•The effect of solid-liquid interface on the solidification of alloy was studied in detail.•Nonequilibrium concentration point defects were detected in the solidified crystal.•The formation of dominant point defects was dominated by atomic defect formation energy.•The moving velocity of solid-liquid interface in our case increased with thermostat undercooling degree.
Li-Pb alloy is considered as a candidate for a blanket material in fusion reactors for its excellent physical and chemical properties. In this work, the solidification process in the B2-LiPb solid(001)-liquid system is studied using molecular dynamics (MD) simulations. The results indicate that the liquid phase atoms near the solid-liquid interface separate according to the crystal structure, and the separated atoms constitute (001) crystal planes through an ordering arrangement, which induces the B2-LiPb crystal to grow layer by layer. The velocity of moving solid-liquid interface in our case increases with the degree of thermostat undercooling. Nonequilibrium concentrations of point defects and a misshapen region are observed in the finally solidified crystal. The formation of the dominant point defect is dominated by defect formation energy. Additionally, Pb atoms are enriched in the misshapen region due to the formation of nonequilibrium concentrations of point defects.</description><subject>A1. Computer simulation</subject><subject>A1. Interfaces</subject><subject>A1. Point defect</subject><subject>A1. Solidification</subject><subject>A2. Growth from melt</subject><subject>Alloy solidification</subject><subject>Atomic structure</subject><subject>B1. Alloys</subject><subject>Chemical properties</subject><subject>Computer simulation</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Energy of formation</subject><subject>Fusion reactors</subject><subject>Interfaces</subject><subject>Molecular dynamics</subject><subject>Planes</subject><subject>Point defects</subject><subject>Reactors</subject><subject>Solidification</subject><subject>Supercooling</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkElLxEAQhRtRcBz9CxLwoofE6iXbTR3cYEBBPTedXqRDkp7pToT59_YYPXupguK9V1UfQucYMgy4uG6zVvpd-PQuI4DLDFgGhB2gBa5KmuYA5BAtYiVpHFfH6CSEFiA6MSzQ2-3oehtGK5Ng-6kTo3VDSJxJguusssbKn1Gy8U7qEBI7JHckXdvXZlZcxqSrtLPbyaok7MKo-1N0ZEQX9NlvX6KPh_v31VO6fnl8Xt2uU0kZjGleAFMCN7pmDTEYyroqhBGmlDivGyprqRTRxoDEUlBVlFXDJJWgVCm0qildoos5N962nXQYeesmP8SVHNeU0JxWJYuqYlZJ70Lw2vCNt73wO46B7wHylv8B5HuAHBiPpKLxZjbq-MOX1Z4HafUgtbJey5ErZ_-L-AZG2n36</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Xu, Chao</creator><creator>Gan, Xianglai</creator><creator>Meng, Xiancai</creator><creator>Xiao, Shifang</creator><creator>Deng, Huiqiu</creator><creator>Li, Xiaofan</creator><creator>Hu, Wangyu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170715</creationdate><title>Atomistic simulations of solidification process in B2-LiPb solid(001)-liquid system</title><author>Xu, Chao ; Gan, Xianglai ; Meng, Xiancai ; Xiao, Shifang ; Deng, Huiqiu ; Li, Xiaofan ; Hu, Wangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-5604da1be94b2f107986afaf7c159b3c9cdd2eff0c1ca3d678b4c3c0dd7aed933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A1. Computer simulation</topic><topic>A1. Interfaces</topic><topic>A1. Point defect</topic><topic>A1. Solidification</topic><topic>A2. Growth from melt</topic><topic>Alloy solidification</topic><topic>Atomic structure</topic><topic>B1. Alloys</topic><topic>Chemical properties</topic><topic>Computer simulation</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Energy of formation</topic><topic>Fusion reactors</topic><topic>Interfaces</topic><topic>Molecular dynamics</topic><topic>Planes</topic><topic>Point defects</topic><topic>Reactors</topic><topic>Solidification</topic><topic>Supercooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Gan, Xianglai</creatorcontrib><creatorcontrib>Meng, Xiancai</creatorcontrib><creatorcontrib>Xiao, Shifang</creatorcontrib><creatorcontrib>Deng, Huiqiu</creatorcontrib><creatorcontrib>Li, Xiaofan</creatorcontrib><creatorcontrib>Hu, Wangyu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chao</au><au>Gan, Xianglai</au><au>Meng, Xiancai</au><au>Xiao, Shifang</au><au>Deng, Huiqiu</au><au>Li, Xiaofan</au><au>Hu, Wangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic simulations of solidification process in B2-LiPb solid(001)-liquid system</atitle><jtitle>Journal of crystal growth</jtitle><date>2017-07-15</date><risdate>2017</risdate><volume>470</volume><spage>113</spage><epage>121</epage><pages>113-121</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•The effect of solid-liquid interface on the solidification of alloy was studied in detail.•Nonequilibrium concentration point defects were detected in the solidified crystal.•The formation of dominant point defects was dominated by atomic defect formation energy.•The moving velocity of solid-liquid interface in our case increased with thermostat undercooling degree.
Li-Pb alloy is considered as a candidate for a blanket material in fusion reactors for its excellent physical and chemical properties. In this work, the solidification process in the B2-LiPb solid(001)-liquid system is studied using molecular dynamics (MD) simulations. The results indicate that the liquid phase atoms near the solid-liquid interface separate according to the crystal structure, and the separated atoms constitute (001) crystal planes through an ordering arrangement, which induces the B2-LiPb crystal to grow layer by layer. The velocity of moving solid-liquid interface in our case increases with the degree of thermostat undercooling. Nonequilibrium concentrations of point defects and a misshapen region are observed in the finally solidified crystal. The formation of the dominant point defect is dominated by defect formation energy. Additionally, Pb atoms are enriched in the misshapen region due to the formation of nonequilibrium concentrations of point defects.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2017.04.024</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2017-07, Vol.470, p.113-121 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_journals_1932353874 |
source | Access via ScienceDirect (Elsevier) |
subjects | A1. Computer simulation A1. Interfaces A1. Point defect A1. Solidification A2. Growth from melt Alloy solidification Atomic structure B1. Alloys Chemical properties Computer simulation Crystal defects Crystal structure Energy of formation Fusion reactors Interfaces Molecular dynamics Planes Point defects Reactors Solidification Supercooling |
title | Atomistic simulations of solidification process in B2-LiPb solid(001)-liquid system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20simulations%20of%20solidification%20process%20in%20B2-LiPb%20solid(001)-liquid%20system&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Xu,%20Chao&rft.date=2017-07-15&rft.volume=470&rft.spage=113&rft.epage=121&rft.pages=113-121&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2017.04.024&rft_dat=%3Cproquest_cross%3E1932353874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932353874&rft_id=info:pmid/&rft_els_id=S0022024817302531&rfr_iscdi=true |