Atomistic simulations of solidification process in B2-LiPb solid(001)-liquid system

•The effect of solid-liquid interface on the solidification of alloy was studied in detail.•Nonequilibrium concentration point defects were detected in the solidified crystal.•The formation of dominant point defects was dominated by atomic defect formation energy.•The moving velocity of solid-liquid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2017-07, Vol.470, p.113-121
Hauptverfasser: Xu, Chao, Gan, Xianglai, Meng, Xiancai, Xiao, Shifang, Deng, Huiqiu, Li, Xiaofan, Hu, Wangyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue
container_start_page 113
container_title Journal of crystal growth
container_volume 470
creator Xu, Chao
Gan, Xianglai
Meng, Xiancai
Xiao, Shifang
Deng, Huiqiu
Li, Xiaofan
Hu, Wangyu
description •The effect of solid-liquid interface on the solidification of alloy was studied in detail.•Nonequilibrium concentration point defects were detected in the solidified crystal.•The formation of dominant point defects was dominated by atomic defect formation energy.•The moving velocity of solid-liquid interface in our case increased with thermostat undercooling degree. Li-Pb alloy is considered as a candidate for a blanket material in fusion reactors for its excellent physical and chemical properties. In this work, the solidification process in the B2-LiPb solid(001)-liquid system is studied using molecular dynamics (MD) simulations. The results indicate that the liquid phase atoms near the solid-liquid interface separate according to the crystal structure, and the separated atoms constitute (001) crystal planes through an ordering arrangement, which induces the B2-LiPb crystal to grow layer by layer. The velocity of moving solid-liquid interface in our case increases with the degree of thermostat undercooling. Nonequilibrium concentrations of point defects and a misshapen region are observed in the finally solidified crystal. The formation of the dominant point defect is dominated by defect formation energy. Additionally, Pb atoms are enriched in the misshapen region due to the formation of nonequilibrium concentrations of point defects.
doi_str_mv 10.1016/j.jcrysgro.2017.04.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932353874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024817302531</els_id><sourcerecordid>1932353874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-5604da1be94b2f107986afaf7c159b3c9cdd2eff0c1ca3d678b4c3c0dd7aed933</originalsourceid><addsrcrecordid>eNqFkElLxEAQhRtRcBz9CxLwoofE6iXbTR3cYEBBPTedXqRDkp7pToT59_YYPXupguK9V1UfQucYMgy4uG6zVvpd-PQuI4DLDFgGhB2gBa5KmuYA5BAtYiVpHFfH6CSEFiA6MSzQ2-3oehtGK5Ng-6kTo3VDSJxJguusssbKn1Gy8U7qEBI7JHckXdvXZlZcxqSrtLPbyaok7MKo-1N0ZEQX9NlvX6KPh_v31VO6fnl8Xt2uU0kZjGleAFMCN7pmDTEYyroqhBGmlDivGyprqRTRxoDEUlBVlFXDJJWgVCm0qildoos5N962nXQYeesmP8SVHNeU0JxWJYuqYlZJ70Lw2vCNt73wO46B7wHylv8B5HuAHBiPpKLxZjbq-MOX1Z4HafUgtbJey5ErZ_-L-AZG2n36</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932353874</pqid></control><display><type>article</type><title>Atomistic simulations of solidification process in B2-LiPb solid(001)-liquid system</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Chao ; Gan, Xianglai ; Meng, Xiancai ; Xiao, Shifang ; Deng, Huiqiu ; Li, Xiaofan ; Hu, Wangyu</creator><creatorcontrib>Xu, Chao ; Gan, Xianglai ; Meng, Xiancai ; Xiao, Shifang ; Deng, Huiqiu ; Li, Xiaofan ; Hu, Wangyu</creatorcontrib><description>•The effect of solid-liquid interface on the solidification of alloy was studied in detail.•Nonequilibrium concentration point defects were detected in the solidified crystal.•The formation of dominant point defects was dominated by atomic defect formation energy.•The moving velocity of solid-liquid interface in our case increased with thermostat undercooling degree. Li-Pb alloy is considered as a candidate for a blanket material in fusion reactors for its excellent physical and chemical properties. In this work, the solidification process in the B2-LiPb solid(001)-liquid system is studied using molecular dynamics (MD) simulations. The results indicate that the liquid phase atoms near the solid-liquid interface separate according to the crystal structure, and the separated atoms constitute (001) crystal planes through an ordering arrangement, which induces the B2-LiPb crystal to grow layer by layer. The velocity of moving solid-liquid interface in our case increases with the degree of thermostat undercooling. Nonequilibrium concentrations of point defects and a misshapen region are observed in the finally solidified crystal. The formation of the dominant point defect is dominated by defect formation energy. Additionally, Pb atoms are enriched in the misshapen region due to the formation of nonequilibrium concentrations of point defects.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2017.04.024</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Computer simulation ; A1. Interfaces ; A1. Point defect ; A1. Solidification ; A2. Growth from melt ; Alloy solidification ; Atomic structure ; B1. Alloys ; Chemical properties ; Computer simulation ; Crystal defects ; Crystal structure ; Energy of formation ; Fusion reactors ; Interfaces ; Molecular dynamics ; Planes ; Point defects ; Reactors ; Solidification ; Supercooling</subject><ispartof>Journal of crystal growth, 2017-07, Vol.470, p.113-121</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Jul 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-5604da1be94b2f107986afaf7c159b3c9cdd2eff0c1ca3d678b4c3c0dd7aed933</citedby><cites>FETCH-LOGICAL-c340t-5604da1be94b2f107986afaf7c159b3c9cdd2eff0c1ca3d678b4c3c0dd7aed933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2017.04.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Gan, Xianglai</creatorcontrib><creatorcontrib>Meng, Xiancai</creatorcontrib><creatorcontrib>Xiao, Shifang</creatorcontrib><creatorcontrib>Deng, Huiqiu</creatorcontrib><creatorcontrib>Li, Xiaofan</creatorcontrib><creatorcontrib>Hu, Wangyu</creatorcontrib><title>Atomistic simulations of solidification process in B2-LiPb solid(001)-liquid system</title><title>Journal of crystal growth</title><description>•The effect of solid-liquid interface on the solidification of alloy was studied in detail.•Nonequilibrium concentration point defects were detected in the solidified crystal.•The formation of dominant point defects was dominated by atomic defect formation energy.•The moving velocity of solid-liquid interface in our case increased with thermostat undercooling degree. Li-Pb alloy is considered as a candidate for a blanket material in fusion reactors for its excellent physical and chemical properties. In this work, the solidification process in the B2-LiPb solid(001)-liquid system is studied using molecular dynamics (MD) simulations. The results indicate that the liquid phase atoms near the solid-liquid interface separate according to the crystal structure, and the separated atoms constitute (001) crystal planes through an ordering arrangement, which induces the B2-LiPb crystal to grow layer by layer. The velocity of moving solid-liquid interface in our case increases with the degree of thermostat undercooling. Nonequilibrium concentrations of point defects and a misshapen region are observed in the finally solidified crystal. The formation of the dominant point defect is dominated by defect formation energy. Additionally, Pb atoms are enriched in the misshapen region due to the formation of nonequilibrium concentrations of point defects.</description><subject>A1. Computer simulation</subject><subject>A1. Interfaces</subject><subject>A1. Point defect</subject><subject>A1. Solidification</subject><subject>A2. Growth from melt</subject><subject>Alloy solidification</subject><subject>Atomic structure</subject><subject>B1. Alloys</subject><subject>Chemical properties</subject><subject>Computer simulation</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Energy of formation</subject><subject>Fusion reactors</subject><subject>Interfaces</subject><subject>Molecular dynamics</subject><subject>Planes</subject><subject>Point defects</subject><subject>Reactors</subject><subject>Solidification</subject><subject>Supercooling</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkElLxEAQhRtRcBz9CxLwoofE6iXbTR3cYEBBPTedXqRDkp7pToT59_YYPXupguK9V1UfQucYMgy4uG6zVvpd-PQuI4DLDFgGhB2gBa5KmuYA5BAtYiVpHFfH6CSEFiA6MSzQ2-3oehtGK5Ng-6kTo3VDSJxJguusssbKn1Gy8U7qEBI7JHckXdvXZlZcxqSrtLPbyaok7MKo-1N0ZEQX9NlvX6KPh_v31VO6fnl8Xt2uU0kZjGleAFMCN7pmDTEYyroqhBGmlDivGyprqRTRxoDEUlBVlFXDJJWgVCm0qildoos5N962nXQYeesmP8SVHNeU0JxWJYuqYlZJ70Lw2vCNt73wO46B7wHylv8B5HuAHBiPpKLxZjbq-MOX1Z4HafUgtbJey5ErZ_-L-AZG2n36</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Xu, Chao</creator><creator>Gan, Xianglai</creator><creator>Meng, Xiancai</creator><creator>Xiao, Shifang</creator><creator>Deng, Huiqiu</creator><creator>Li, Xiaofan</creator><creator>Hu, Wangyu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170715</creationdate><title>Atomistic simulations of solidification process in B2-LiPb solid(001)-liquid system</title><author>Xu, Chao ; Gan, Xianglai ; Meng, Xiancai ; Xiao, Shifang ; Deng, Huiqiu ; Li, Xiaofan ; Hu, Wangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-5604da1be94b2f107986afaf7c159b3c9cdd2eff0c1ca3d678b4c3c0dd7aed933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A1. Computer simulation</topic><topic>A1. Interfaces</topic><topic>A1. Point defect</topic><topic>A1. Solidification</topic><topic>A2. Growth from melt</topic><topic>Alloy solidification</topic><topic>Atomic structure</topic><topic>B1. Alloys</topic><topic>Chemical properties</topic><topic>Computer simulation</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Energy of formation</topic><topic>Fusion reactors</topic><topic>Interfaces</topic><topic>Molecular dynamics</topic><topic>Planes</topic><topic>Point defects</topic><topic>Reactors</topic><topic>Solidification</topic><topic>Supercooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Gan, Xianglai</creatorcontrib><creatorcontrib>Meng, Xiancai</creatorcontrib><creatorcontrib>Xiao, Shifang</creatorcontrib><creatorcontrib>Deng, Huiqiu</creatorcontrib><creatorcontrib>Li, Xiaofan</creatorcontrib><creatorcontrib>Hu, Wangyu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chao</au><au>Gan, Xianglai</au><au>Meng, Xiancai</au><au>Xiao, Shifang</au><au>Deng, Huiqiu</au><au>Li, Xiaofan</au><au>Hu, Wangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic simulations of solidification process in B2-LiPb solid(001)-liquid system</atitle><jtitle>Journal of crystal growth</jtitle><date>2017-07-15</date><risdate>2017</risdate><volume>470</volume><spage>113</spage><epage>121</epage><pages>113-121</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•The effect of solid-liquid interface on the solidification of alloy was studied in detail.•Nonequilibrium concentration point defects were detected in the solidified crystal.•The formation of dominant point defects was dominated by atomic defect formation energy.•The moving velocity of solid-liquid interface in our case increased with thermostat undercooling degree. Li-Pb alloy is considered as a candidate for a blanket material in fusion reactors for its excellent physical and chemical properties. In this work, the solidification process in the B2-LiPb solid(001)-liquid system is studied using molecular dynamics (MD) simulations. The results indicate that the liquid phase atoms near the solid-liquid interface separate according to the crystal structure, and the separated atoms constitute (001) crystal planes through an ordering arrangement, which induces the B2-LiPb crystal to grow layer by layer. The velocity of moving solid-liquid interface in our case increases with the degree of thermostat undercooling. Nonequilibrium concentrations of point defects and a misshapen region are observed in the finally solidified crystal. The formation of the dominant point defect is dominated by defect formation energy. Additionally, Pb atoms are enriched in the misshapen region due to the formation of nonequilibrium concentrations of point defects.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2017.04.024</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2017-07, Vol.470, p.113-121
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_journals_1932353874
source Access via ScienceDirect (Elsevier)
subjects A1. Computer simulation
A1. Interfaces
A1. Point defect
A1. Solidification
A2. Growth from melt
Alloy solidification
Atomic structure
B1. Alloys
Chemical properties
Computer simulation
Crystal defects
Crystal structure
Energy of formation
Fusion reactors
Interfaces
Molecular dynamics
Planes
Point defects
Reactors
Solidification
Supercooling
title Atomistic simulations of solidification process in B2-LiPb solid(001)-liquid system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20simulations%20of%20solidification%20process%20in%20B2-LiPb%20solid(001)-liquid%20system&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Xu,%20Chao&rft.date=2017-07-15&rft.volume=470&rft.spage=113&rft.epage=121&rft.pages=113-121&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2017.04.024&rft_dat=%3Cproquest_cross%3E1932353874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932353874&rft_id=info:pmid/&rft_els_id=S0022024817302531&rfr_iscdi=true