Proteomic identification of potential cancer markers in human urine using subtractive analysis

Urine is an ideal medium in which to focus diagnostic cancer research due to the non-invasive nature and ease of sampling. Many large-scale proteomic studies have shown that urine is unexpectedly complex. We hypothesised that novel diagnostic cancer biomarkers could be discovered using a comparative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of oncology 2016-05, Vol.48 (5), p.1921-1932
Hauptverfasser: HUSI, HOLGER, SKIPWORTH, RICHARD J.E, CRONSHAW, ANDREW, FEARON, KENNETH C.H, ROSS, JAMES A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1932
container_issue 5
container_start_page 1921
container_title International journal of oncology
container_volume 48
creator HUSI, HOLGER
SKIPWORTH, RICHARD J.E
CRONSHAW, ANDREW
FEARON, KENNETH C.H
ROSS, JAMES A
description Urine is an ideal medium in which to focus diagnostic cancer research due to the non-invasive nature and ease of sampling. Many large-scale proteomic studies have shown that urine is unexpectedly complex. We hypothesised that novel diagnostic cancer biomarkers could be discovered using a comparative proteomic analysis of pre-existing data. We assembled a database of 100 published datasets of 5,620 urinary proteins, as well as 46 datasets of 8,620 non-redundant proteins derived from kidney and blood proteome analyses. The data were then used to either subtract or compare molecules from a novel urinary proteome profiling dataset that we generated. We identified 1,161 unique proteins in samples from either cancer-bearing or healthy subjects. Subtractive analysis yielded a subset of 44 proteins that were found uniquely in urine from cancer patients, 30 of which were linked previously to cancer. In conclusion, this approach is useful in discovering novel biomarkers in tissues where unrelated profiling data is available. Only a limited disease-specific novel dataset is required to define new targets or substantiate previous findings. We have shared this discovery platform in the form of our Large Scale Screening Resource database, accessible through the Proteomic Analysis DataBase portal (www.PADB.org).
doi_str_mv 10.3892/ijo.2016.3424
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1932331436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A456289621</galeid><sourcerecordid>A456289621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-9262604e00c8440c27a0ddca55987433fe434859d3713b44b7d2974d3576fa073</originalsourceid><addsrcrecordid>eNptkU1rHSEUhqWkNB_tMtsgBNKVt347LkNI2kKgXbTbiledXG9m9EZnAvn3dbhp2kBxceSc5xyP7wvAKcEr1mn6KW7zimIiV4xT_gYcEaUJopyyg3bHRCPJmT4Ex7VuMaZCYPIOHFKpO64kOwK_vpc8hTxGB6MPaYp9dHaKOcHcw10rtZQdoLPJhQJHW-5DqTAmuJlHm-BcYgpwrjHdwTqvp2LdFB8DtMkOTzXW9-Btb4caPjzHE_Dz5vrH1Rd0--3z16vLW-SEkBPSVFKJecDYdZxjR5XF3jsrhO4UZ6wPnPFOaM8UYWvO18pTrbhnQsneYsVOwPl-7q7khznUyWzzXNoS1RDNKGOEM_mXurNDMDH1eVl4jNWZSy4k7bSkpFGr_1Dt-NBkyin0seVfNVz807AJdpg2NQ_zImN9DaI96EqutYTe7Epsmj4Zgs3ipmlumsVNs7jZ-LPnX83rMfgX-o99Dfi4B-rOJh99ri9Mm4R4h7BARLenfwPIPqVF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932331436</pqid></control><display><type>article</type><title>Proteomic identification of potential cancer markers in human urine using subtractive analysis</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>HUSI, HOLGER ; SKIPWORTH, RICHARD J.E ; CRONSHAW, ANDREW ; FEARON, KENNETH C.H ; ROSS, JAMES A</creator><creatorcontrib>HUSI, HOLGER ; SKIPWORTH, RICHARD J.E ; CRONSHAW, ANDREW ; FEARON, KENNETH C.H ; ROSS, JAMES A</creatorcontrib><description>Urine is an ideal medium in which to focus diagnostic cancer research due to the non-invasive nature and ease of sampling. Many large-scale proteomic studies have shown that urine is unexpectedly complex. We hypothesised that novel diagnostic cancer biomarkers could be discovered using a comparative proteomic analysis of pre-existing data. We assembled a database of 100 published datasets of 5,620 urinary proteins, as well as 46 datasets of 8,620 non-redundant proteins derived from kidney and blood proteome analyses. The data were then used to either subtract or compare molecules from a novel urinary proteome profiling dataset that we generated. We identified 1,161 unique proteins in samples from either cancer-bearing or healthy subjects. Subtractive analysis yielded a subset of 44 proteins that were found uniquely in urine from cancer patients, 30 of which were linked previously to cancer. In conclusion, this approach is useful in discovering novel biomarkers in tissues where unrelated profiling data is available. Only a limited disease-specific novel dataset is required to define new targets or substantiate previous findings. We have shared this discovery platform in the form of our Large Scale Screening Resource database, accessible through the Proteomic Analysis DataBase portal (www.PADB.org).</description><identifier>ISSN: 1019-6439</identifier><identifier>EISSN: 1791-2423</identifier><identifier>DOI: 10.3892/ijo.2016.3424</identifier><identifier>PMID: 26984763</identifier><language>eng</language><publisher>Greece: D.A. Spandidos</publisher><subject>Adult ; Aged ; Biomarkers ; Biomarkers, Tumor - blood ; Biomarkers, Tumor - urine ; Breast cancer ; cancer marker ; Chromatography ; Chromatography, Liquid ; Composition ; Databases, Protein ; Datasets ; Enzymes ; Female ; Humans ; Identification and classification ; Innovations ; Intellectual disabilities ; Kidney - metabolism ; Kinases ; Liver cancer ; Male ; Mass spectrometry ; Meta-analysis ; Neoplasms - blood ; Neoplasms - diagnosis ; Neoplasms - urine ; Organ Specificity ; Ovarian cancer ; Particle size ; Peptides ; Proteins ; Proteomics ; Proteomics - methods ; Scientific imaging ; Software ; Tandem Mass Spectrometry ; Tumor proteins ; Urine</subject><ispartof>International journal of oncology, 2016-05, Vol.48 (5), p.1921-1932</ispartof><rights>Copyright © 2016, Spandidos Publications</rights><rights>COPYRIGHT 2016 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-9262604e00c8440c27a0ddca55987433fe434859d3713b44b7d2974d3576fa073</citedby><cites>FETCH-LOGICAL-c556t-9262604e00c8440c27a0ddca55987433fe434859d3713b44b7d2974d3576fa073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,5577,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26984763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HUSI, HOLGER</creatorcontrib><creatorcontrib>SKIPWORTH, RICHARD J.E</creatorcontrib><creatorcontrib>CRONSHAW, ANDREW</creatorcontrib><creatorcontrib>FEARON, KENNETH C.H</creatorcontrib><creatorcontrib>ROSS, JAMES A</creatorcontrib><title>Proteomic identification of potential cancer markers in human urine using subtractive analysis</title><title>International journal of oncology</title><addtitle>Int J Oncol</addtitle><description>Urine is an ideal medium in which to focus diagnostic cancer research due to the non-invasive nature and ease of sampling. Many large-scale proteomic studies have shown that urine is unexpectedly complex. We hypothesised that novel diagnostic cancer biomarkers could be discovered using a comparative proteomic analysis of pre-existing data. We assembled a database of 100 published datasets of 5,620 urinary proteins, as well as 46 datasets of 8,620 non-redundant proteins derived from kidney and blood proteome analyses. The data were then used to either subtract or compare molecules from a novel urinary proteome profiling dataset that we generated. We identified 1,161 unique proteins in samples from either cancer-bearing or healthy subjects. Subtractive analysis yielded a subset of 44 proteins that were found uniquely in urine from cancer patients, 30 of which were linked previously to cancer. In conclusion, this approach is useful in discovering novel biomarkers in tissues where unrelated profiling data is available. Only a limited disease-specific novel dataset is required to define new targets or substantiate previous findings. We have shared this discovery platform in the form of our Large Scale Screening Resource database, accessible through the Proteomic Analysis DataBase portal (www.PADB.org).</description><subject>Adult</subject><subject>Aged</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - blood</subject><subject>Biomarkers, Tumor - urine</subject><subject>Breast cancer</subject><subject>cancer marker</subject><subject>Chromatography</subject><subject>Chromatography, Liquid</subject><subject>Composition</subject><subject>Databases, Protein</subject><subject>Datasets</subject><subject>Enzymes</subject><subject>Female</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Innovations</subject><subject>Intellectual disabilities</subject><subject>Kidney - metabolism</subject><subject>Kinases</subject><subject>Liver cancer</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Meta-analysis</subject><subject>Neoplasms - blood</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - urine</subject><subject>Organ Specificity</subject><subject>Ovarian cancer</subject><subject>Particle size</subject><subject>Peptides</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Scientific imaging</subject><subject>Software</subject><subject>Tandem Mass Spectrometry</subject><subject>Tumor proteins</subject><subject>Urine</subject><issn>1019-6439</issn><issn>1791-2423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNptkU1rHSEUhqWkNB_tMtsgBNKVt347LkNI2kKgXbTbiledXG9m9EZnAvn3dbhp2kBxceSc5xyP7wvAKcEr1mn6KW7zimIiV4xT_gYcEaUJopyyg3bHRCPJmT4Ex7VuMaZCYPIOHFKpO64kOwK_vpc8hTxGB6MPaYp9dHaKOcHcw10rtZQdoLPJhQJHW-5DqTAmuJlHm-BcYgpwrjHdwTqvp2LdFB8DtMkOTzXW9-Btb4caPjzHE_Dz5vrH1Rd0--3z16vLW-SEkBPSVFKJecDYdZxjR5XF3jsrhO4UZ6wPnPFOaM8UYWvO18pTrbhnQsneYsVOwPl-7q7khznUyWzzXNoS1RDNKGOEM_mXurNDMDH1eVl4jNWZSy4k7bSkpFGr_1Dt-NBkyin0seVfNVz807AJdpg2NQ_zImN9DaI96EqutYTe7Epsmj4Zgs3ipmlumsVNs7jZ-LPnX83rMfgX-o99Dfi4B-rOJh99ri9Mm4R4h7BARLenfwPIPqVF</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>HUSI, HOLGER</creator><creator>SKIPWORTH, RICHARD J.E</creator><creator>CRONSHAW, ANDREW</creator><creator>FEARON, KENNETH C.H</creator><creator>ROSS, JAMES A</creator><general>D.A. Spandidos</general><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160501</creationdate><title>Proteomic identification of potential cancer markers in human urine using subtractive analysis</title><author>HUSI, HOLGER ; SKIPWORTH, RICHARD J.E ; CRONSHAW, ANDREW ; FEARON, KENNETH C.H ; ROSS, JAMES A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-9262604e00c8440c27a0ddca55987433fe434859d3713b44b7d2974d3576fa073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - blood</topic><topic>Biomarkers, Tumor - urine</topic><topic>Breast cancer</topic><topic>cancer marker</topic><topic>Chromatography</topic><topic>Chromatography, Liquid</topic><topic>Composition</topic><topic>Databases, Protein</topic><topic>Datasets</topic><topic>Enzymes</topic><topic>Female</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Innovations</topic><topic>Intellectual disabilities</topic><topic>Kidney - metabolism</topic><topic>Kinases</topic><topic>Liver cancer</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Meta-analysis</topic><topic>Neoplasms - blood</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - urine</topic><topic>Organ Specificity</topic><topic>Ovarian cancer</topic><topic>Particle size</topic><topic>Peptides</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Scientific imaging</topic><topic>Software</topic><topic>Tandem Mass Spectrometry</topic><topic>Tumor proteins</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HUSI, HOLGER</creatorcontrib><creatorcontrib>SKIPWORTH, RICHARD J.E</creatorcontrib><creatorcontrib>CRONSHAW, ANDREW</creatorcontrib><creatorcontrib>FEARON, KENNETH C.H</creatorcontrib><creatorcontrib>ROSS, JAMES A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HUSI, HOLGER</au><au>SKIPWORTH, RICHARD J.E</au><au>CRONSHAW, ANDREW</au><au>FEARON, KENNETH C.H</au><au>ROSS, JAMES A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic identification of potential cancer markers in human urine using subtractive analysis</atitle><jtitle>International journal of oncology</jtitle><addtitle>Int J Oncol</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>48</volume><issue>5</issue><spage>1921</spage><epage>1932</epage><pages>1921-1932</pages><issn>1019-6439</issn><eissn>1791-2423</eissn><abstract>Urine is an ideal medium in which to focus diagnostic cancer research due to the non-invasive nature and ease of sampling. Many large-scale proteomic studies have shown that urine is unexpectedly complex. We hypothesised that novel diagnostic cancer biomarkers could be discovered using a comparative proteomic analysis of pre-existing data. We assembled a database of 100 published datasets of 5,620 urinary proteins, as well as 46 datasets of 8,620 non-redundant proteins derived from kidney and blood proteome analyses. The data were then used to either subtract or compare molecules from a novel urinary proteome profiling dataset that we generated. We identified 1,161 unique proteins in samples from either cancer-bearing or healthy subjects. Subtractive analysis yielded a subset of 44 proteins that were found uniquely in urine from cancer patients, 30 of which were linked previously to cancer. In conclusion, this approach is useful in discovering novel biomarkers in tissues where unrelated profiling data is available. Only a limited disease-specific novel dataset is required to define new targets or substantiate previous findings. We have shared this discovery platform in the form of our Large Scale Screening Resource database, accessible through the Proteomic Analysis DataBase portal (www.PADB.org).</abstract><cop>Greece</cop><pub>D.A. Spandidos</pub><pmid>26984763</pmid><doi>10.3892/ijo.2016.3424</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1019-6439
ispartof International journal of oncology, 2016-05, Vol.48 (5), p.1921-1932
issn 1019-6439
1791-2423
language eng
recordid cdi_proquest_journals_1932331436
source Spandidos Publications Journals; MEDLINE; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection
subjects Adult
Aged
Biomarkers
Biomarkers, Tumor - blood
Biomarkers, Tumor - urine
Breast cancer
cancer marker
Chromatography
Chromatography, Liquid
Composition
Databases, Protein
Datasets
Enzymes
Female
Humans
Identification and classification
Innovations
Intellectual disabilities
Kidney - metabolism
Kinases
Liver cancer
Male
Mass spectrometry
Meta-analysis
Neoplasms - blood
Neoplasms - diagnosis
Neoplasms - urine
Organ Specificity
Ovarian cancer
Particle size
Peptides
Proteins
Proteomics
Proteomics - methods
Scientific imaging
Software
Tandem Mass Spectrometry
Tumor proteins
Urine
title Proteomic identification of potential cancer markers in human urine using subtractive analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T14%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20identification%20of%20potential%20cancer%20markers%20in%20human%20urine%20using%20subtractive%20analysis&rft.jtitle=International%20journal%20of%20oncology&rft.au=HUSI,%20HOLGER&rft.date=2016-05-01&rft.volume=48&rft.issue=5&rft.spage=1921&rft.epage=1932&rft.pages=1921-1932&rft.issn=1019-6439&rft.eissn=1791-2423&rft_id=info:doi/10.3892/ijo.2016.3424&rft_dat=%3Cgale_proqu%3EA456289621%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932331436&rft_id=info:pmid/26984763&rft_galeid=A456289621&rfr_iscdi=true