Advances on a cryogen-free Vuilleumier type pulse tube cryocooler

•The experimental setup of the Vuilleumier type pulse tube cryocooler is introduced.•A minimum no-load temperature of 15.1K has been obtained in experiment with a pressure ratio near 1.18.•Numerical simulation gives a lowest temperature similar to that of experimental results under same condition.•T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryogenics (Guildford) 2017-03, Vol.82, p.62-67
Hauptverfasser: Wang, Yanan, Zhao, Yuejing, Zhang, Yibing, Wang, Xiaotao, Vanapalli, Srinivas, Dai, Wei, Li, Haibing, Luo, Ercang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 62
container_title Cryogenics (Guildford)
container_volume 82
creator Wang, Yanan
Zhao, Yuejing
Zhang, Yibing
Wang, Xiaotao
Vanapalli, Srinivas
Dai, Wei
Li, Haibing
Luo, Ercang
description •The experimental setup of the Vuilleumier type pulse tube cryocooler is introduced.•A minimum no-load temperature of 15.1K has been obtained in experiment with a pressure ratio near 1.18.•Numerical simulation gives a lowest temperature similar to that of experimental results under same condition.•The simulation shows that relationship between pressure ratio and lowest temperature is quite weak.•This result gives us design guidelines to improve the system performance. This paper presents experimental results and numerical evaluation of a Vuilleumier (VM) type pulse tube cryocooler. The cryocooler consists of three main subsystems: a thermal compressor, a low temperature pulse tube cryocooler, and a Stirling type precooler. The thermal compressor, similar to that in a Vuilleumier cryocooler, is used to drive the low temperature stage pulse tube cryocooler. The Stirling type precooler is used to establish a temperature difference for the thermal compressor to generate pressure wave. A lowest no-load temperature of 15.1K is obtained with a pressure ratio of 1.18, a working frequency of 3Hz and an average pressure of 2.45MPa. Numerical simulations have been performed to help the understanding of the system performance. With given experimental conditions, the simulation predicts a lowest temperature in reasonable agreement with the experimental result. Analyses show that there is a large discrepancy in the pre-cooling power between experiments and calculation, which requires further investigation.
doi_str_mv 10.1016/j.cryogenics.2017.01.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932194276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011227516302661</els_id><sourcerecordid>1932194276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-b4445d11170d2915bd9e53ed4055399a56f149582a4555643d8839ea236ad2173</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-DwHPrZl8tM1xXfyCBS_qNWSTqbR025q0C_vfm3UFj55mGN57w_sRQoHlwKC4a3MXDsMn9o2LOWdQ5gxyxsozsoCq1BnnQp2TBWMAaS_VJbmKsWWMSV7wBVmt_N72DiMdemrpb1ZWB0T6MTddh_OuwUCnw4h0nLuIdJq3-CN0w9BhuCYXtU33m9-5JO-PD2_r52zz-vSyXm0yJ3QxZVsppfIAUDLPNait16gEesmUElpbVdQgtaq4lUqpQgpfVUKj5aKwnkMpluT2lDuG4WvGOJl2mEOfXhrQgoOWvCySqjqpXBhiDFibMTQ7Gw4GmDkCM635A2aOwAwDk4Al6_3JiqnFPpU20TWY2PgmoJuMH5r_Q74BdEd34g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932194276</pqid></control><display><type>article</type><title>Advances on a cryogen-free Vuilleumier type pulse tube cryocooler</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Yanan ; Zhao, Yuejing ; Zhang, Yibing ; Wang, Xiaotao ; Vanapalli, Srinivas ; Dai, Wei ; Li, Haibing ; Luo, Ercang</creator><creatorcontrib>Wang, Yanan ; Zhao, Yuejing ; Zhang, Yibing ; Wang, Xiaotao ; Vanapalli, Srinivas ; Dai, Wei ; Li, Haibing ; Luo, Ercang</creatorcontrib><description>•The experimental setup of the Vuilleumier type pulse tube cryocooler is introduced.•A minimum no-load temperature of 15.1K has been obtained in experiment with a pressure ratio near 1.18.•Numerical simulation gives a lowest temperature similar to that of experimental results under same condition.•The simulation shows that relationship between pressure ratio and lowest temperature is quite weak.•This result gives us design guidelines to improve the system performance. This paper presents experimental results and numerical evaluation of a Vuilleumier (VM) type pulse tube cryocooler. The cryocooler consists of three main subsystems: a thermal compressor, a low temperature pulse tube cryocooler, and a Stirling type precooler. The thermal compressor, similar to that in a Vuilleumier cryocooler, is used to drive the low temperature stage pulse tube cryocooler. The Stirling type precooler is used to establish a temperature difference for the thermal compressor to generate pressure wave. A lowest no-load temperature of 15.1K is obtained with a pressure ratio of 1.18, a working frequency of 3Hz and an average pressure of 2.45MPa. Numerical simulations have been performed to help the understanding of the system performance. With given experimental conditions, the simulation predicts a lowest temperature in reasonable agreement with the experimental result. Analyses show that there is a large discrepancy in the pre-cooling power between experiments and calculation, which requires further investigation.</description><identifier>ISSN: 0011-2275</identifier><identifier>EISSN: 1879-2235</identifier><identifier>DOI: 10.1016/j.cryogenics.2017.01.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Compressors ; Computer simulation ; Cooling ; Low temperature physics ; Numerical simulations ; Pressure ratio ; Pulse tubes ; Thermal compressor ; Vuilleumier type pulse tube cryocooler</subject><ispartof>Cryogenics (Guildford), 2017-03, Vol.82, p.62-67</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-b4445d11170d2915bd9e53ed4055399a56f149582a4555643d8839ea236ad2173</citedby><cites>FETCH-LOGICAL-c396t-b4445d11170d2915bd9e53ed4055399a56f149582a4555643d8839ea236ad2173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cryogenics.2017.01.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Zhao, Yuejing</creatorcontrib><creatorcontrib>Zhang, Yibing</creatorcontrib><creatorcontrib>Wang, Xiaotao</creatorcontrib><creatorcontrib>Vanapalli, Srinivas</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Li, Haibing</creatorcontrib><creatorcontrib>Luo, Ercang</creatorcontrib><title>Advances on a cryogen-free Vuilleumier type pulse tube cryocooler</title><title>Cryogenics (Guildford)</title><description>•The experimental setup of the Vuilleumier type pulse tube cryocooler is introduced.•A minimum no-load temperature of 15.1K has been obtained in experiment with a pressure ratio near 1.18.•Numerical simulation gives a lowest temperature similar to that of experimental results under same condition.•The simulation shows that relationship between pressure ratio and lowest temperature is quite weak.•This result gives us design guidelines to improve the system performance. This paper presents experimental results and numerical evaluation of a Vuilleumier (VM) type pulse tube cryocooler. The cryocooler consists of three main subsystems: a thermal compressor, a low temperature pulse tube cryocooler, and a Stirling type precooler. The thermal compressor, similar to that in a Vuilleumier cryocooler, is used to drive the low temperature stage pulse tube cryocooler. The Stirling type precooler is used to establish a temperature difference for the thermal compressor to generate pressure wave. A lowest no-load temperature of 15.1K is obtained with a pressure ratio of 1.18, a working frequency of 3Hz and an average pressure of 2.45MPa. Numerical simulations have been performed to help the understanding of the system performance. With given experimental conditions, the simulation predicts a lowest temperature in reasonable agreement with the experimental result. Analyses show that there is a large discrepancy in the pre-cooling power between experiments and calculation, which requires further investigation.</description><subject>Compressors</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Low temperature physics</subject><subject>Numerical simulations</subject><subject>Pressure ratio</subject><subject>Pulse tubes</subject><subject>Thermal compressor</subject><subject>Vuilleumier type pulse tube cryocooler</subject><issn>0011-2275</issn><issn>1879-2235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-DwHPrZl8tM1xXfyCBS_qNWSTqbR025q0C_vfm3UFj55mGN57w_sRQoHlwKC4a3MXDsMn9o2LOWdQ5gxyxsozsoCq1BnnQp2TBWMAaS_VJbmKsWWMSV7wBVmt_N72DiMdemrpb1ZWB0T6MTddh_OuwUCnw4h0nLuIdJq3-CN0w9BhuCYXtU33m9-5JO-PD2_r52zz-vSyXm0yJ3QxZVsppfIAUDLPNait16gEesmUElpbVdQgtaq4lUqpQgpfVUKj5aKwnkMpluT2lDuG4WvGOJl2mEOfXhrQgoOWvCySqjqpXBhiDFibMTQ7Gw4GmDkCM635A2aOwAwDk4Al6_3JiqnFPpU20TWY2PgmoJuMH5r_Q74BdEd34g</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Wang, Yanan</creator><creator>Zhao, Yuejing</creator><creator>Zhang, Yibing</creator><creator>Wang, Xiaotao</creator><creator>Vanapalli, Srinivas</creator><creator>Dai, Wei</creator><creator>Li, Haibing</creator><creator>Luo, Ercang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201703</creationdate><title>Advances on a cryogen-free Vuilleumier type pulse tube cryocooler</title><author>Wang, Yanan ; Zhao, Yuejing ; Zhang, Yibing ; Wang, Xiaotao ; Vanapalli, Srinivas ; Dai, Wei ; Li, Haibing ; Luo, Ercang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-b4445d11170d2915bd9e53ed4055399a56f149582a4555643d8839ea236ad2173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Compressors</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Low temperature physics</topic><topic>Numerical simulations</topic><topic>Pressure ratio</topic><topic>Pulse tubes</topic><topic>Thermal compressor</topic><topic>Vuilleumier type pulse tube cryocooler</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Zhao, Yuejing</creatorcontrib><creatorcontrib>Zhang, Yibing</creatorcontrib><creatorcontrib>Wang, Xiaotao</creatorcontrib><creatorcontrib>Vanapalli, Srinivas</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Li, Haibing</creatorcontrib><creatorcontrib>Luo, Ercang</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cryogenics (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yanan</au><au>Zhao, Yuejing</au><au>Zhang, Yibing</au><au>Wang, Xiaotao</au><au>Vanapalli, Srinivas</au><au>Dai, Wei</au><au>Li, Haibing</au><au>Luo, Ercang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances on a cryogen-free Vuilleumier type pulse tube cryocooler</atitle><jtitle>Cryogenics (Guildford)</jtitle><date>2017-03</date><risdate>2017</risdate><volume>82</volume><spage>62</spage><epage>67</epage><pages>62-67</pages><issn>0011-2275</issn><eissn>1879-2235</eissn><abstract>•The experimental setup of the Vuilleumier type pulse tube cryocooler is introduced.•A minimum no-load temperature of 15.1K has been obtained in experiment with a pressure ratio near 1.18.•Numerical simulation gives a lowest temperature similar to that of experimental results under same condition.•The simulation shows that relationship between pressure ratio and lowest temperature is quite weak.•This result gives us design guidelines to improve the system performance. This paper presents experimental results and numerical evaluation of a Vuilleumier (VM) type pulse tube cryocooler. The cryocooler consists of three main subsystems: a thermal compressor, a low temperature pulse tube cryocooler, and a Stirling type precooler. The thermal compressor, similar to that in a Vuilleumier cryocooler, is used to drive the low temperature stage pulse tube cryocooler. The Stirling type precooler is used to establish a temperature difference for the thermal compressor to generate pressure wave. A lowest no-load temperature of 15.1K is obtained with a pressure ratio of 1.18, a working frequency of 3Hz and an average pressure of 2.45MPa. Numerical simulations have been performed to help the understanding of the system performance. With given experimental conditions, the simulation predicts a lowest temperature in reasonable agreement with the experimental result. Analyses show that there is a large discrepancy in the pre-cooling power between experiments and calculation, which requires further investigation.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cryogenics.2017.01.007</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-2275
ispartof Cryogenics (Guildford), 2017-03, Vol.82, p.62-67
issn 0011-2275
1879-2235
language eng
recordid cdi_proquest_journals_1932194276
source Elsevier ScienceDirect Journals
subjects Compressors
Computer simulation
Cooling
Low temperature physics
Numerical simulations
Pressure ratio
Pulse tubes
Thermal compressor
Vuilleumier type pulse tube cryocooler
title Advances on a cryogen-free Vuilleumier type pulse tube cryocooler
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20on%20a%20cryogen-free%20Vuilleumier%20type%20pulse%20tube%20cryocooler&rft.jtitle=Cryogenics%20(Guildford)&rft.au=Wang,%20Yanan&rft.date=2017-03&rft.volume=82&rft.spage=62&rft.epage=67&rft.pages=62-67&rft.issn=0011-2275&rft.eissn=1879-2235&rft_id=info:doi/10.1016/j.cryogenics.2017.01.007&rft_dat=%3Cproquest_cross%3E1932194276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932194276&rft_id=info:pmid/&rft_els_id=S0011227516302661&rfr_iscdi=true