Influence of reaction conditions and kinetic analysis of the selective hydrogenation of oleic acid toward fatty alcohols on Ru-Sn-B/Al^sub 2^O^sub 3^ in the flow reactor

The hydrogenation of oleic acid (cis-9-octadecenoic acid) into oleyl alcohol (methyl-9-octadecen-1-ol) was studied in the presence of a bimetallic RuSn supported over alumina catalyst in the flow reactor. It was shown that the process should be performed at the temperature range of 280-330 °C, hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2017-07, Vol.209, p.611
Hauptverfasser: Rodina, VO, Ermakov, D Yu, Saraev, AA, Reshetnikov, SI, Yakovlev, VA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 611
container_title Applied catalysis. B, Environmental
container_volume 209
creator Rodina, VO
Ermakov, D Yu
Saraev, AA
Reshetnikov, SI
Yakovlev, VA
description The hydrogenation of oleic acid (cis-9-octadecenoic acid) into oleyl alcohol (methyl-9-octadecen-1-ol) was studied in the presence of a bimetallic RuSn supported over alumina catalyst in the flow reactor. It was shown that the process should be performed at the temperature range of 280-330 °C, hydrogen pressure of 3.5-5.3 MPa and contact time less than 0.2 h in order to obtain the highest possible yield of desired products (fatty alcohols and waxes). The study by physicochemical methods (XRD, BET, TPR, XPS, TEM) revealed that modification of the catalyst with boron promotes additional simultaneous reduction of the major part of tin and ruthenium oxides, most of which are reduced below 310 °C. Crystalline RuxSny structures with variable composition, which seem to be the active component of the selective hydrogenation catalyst, were found to be formed after the reaction at temperatures higher than 300 °C. Our work demonstarted that a scheme of oleic acid transformations includes formation of waxes by recombination of carboxyl and alkanes intermediates, acid decarboxylation and hydrocracking of waxes to alkanes. Mathematic simulation methods allowed us to estimate rate constants of the process stages and the main kinetic parameters (Ea, k0).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1932192904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932192904</sourcerecordid><originalsourceid>FETCH-proquest_journals_19321929043</originalsourceid><addsrcrecordid>eNqNjsFKxDAYhIMoWF3f4QfPwTZZ3PaoouhJUM9dYvLHZg35NUld-ki-pWn1ATzNwMw3zAGrmnYjuWxbeciquhOXXMqNPGYnKe3quhZStBX7fgjWjxg0AlmIqHR2FEBTMG52CVQw8O4CZqeLV35KLs3dPCAk9FiAL4RhMpHeMKgFLzF5nAHtDGTaq2jAqpwnUF7TQL5MBHga-XPg1xdXvk_jK4j-cVHZgwvLvvW0_z1FccWOrPIJz_70lJ3f3b7c3POPSJ8jprzd0RjLwbRtOimaTnT1Wv6v9QPI-2B0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932192904</pqid></control><display><type>article</type><title>Influence of reaction conditions and kinetic analysis of the selective hydrogenation of oleic acid toward fatty alcohols on Ru-Sn-B/Al^sub 2^O^sub 3^ in the flow reactor</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rodina, VO ; Ermakov, D Yu ; Saraev, AA ; Reshetnikov, SI ; Yakovlev, VA</creator><creatorcontrib>Rodina, VO ; Ermakov, D Yu ; Saraev, AA ; Reshetnikov, SI ; Yakovlev, VA</creatorcontrib><description>The hydrogenation of oleic acid (cis-9-octadecenoic acid) into oleyl alcohol (methyl-9-octadecen-1-ol) was studied in the presence of a bimetallic RuSn supported over alumina catalyst in the flow reactor. It was shown that the process should be performed at the temperature range of 280-330 °C, hydrogen pressure of 3.5-5.3 MPa and contact time less than 0.2 h in order to obtain the highest possible yield of desired products (fatty alcohols and waxes). The study by physicochemical methods (XRD, BET, TPR, XPS, TEM) revealed that modification of the catalyst with boron promotes additional simultaneous reduction of the major part of tin and ruthenium oxides, most of which are reduced below 310 °C. Crystalline RuxSny structures with variable composition, which seem to be the active component of the selective hydrogenation catalyst, were found to be formed after the reaction at temperatures higher than 300 °C. Our work demonstarted that a scheme of oleic acid transformations includes formation of waxes by recombination of carboxyl and alkanes intermediates, acid decarboxylation and hydrocracking of waxes to alkanes. Mathematic simulation methods allowed us to estimate rate constants of the process stages and the main kinetic parameters (Ea, k0).</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><language>eng</language><publisher>Amsterdam: Elsevier BV</publisher><subject>Alcohol ; Alcohols ; Alkanes ; Aluminum ; Aluminum oxide ; Bimetals ; Boron ; Catalysis ; Catalysts ; Computer simulation ; Constants ; Contact pressure ; Crystal structure ; Decarboxylation ; Hydrocracking ; Hydrogen storage ; Hydrogenation ; Intermediates ; Mathematical analysis ; Oleic acid ; Oleyl alcohol ; Oxides ; Rate constants ; Reactors ; Recombination ; Ruthenium ; Temperature effects ; Tin ; Transformations (mathematics) ; Waxes ; X ray photoelectron spectroscopy</subject><ispartof>Applied catalysis. B, Environmental, 2017-07, Vol.209, p.611</ispartof><rights>Copyright Elsevier BV Jul 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Rodina, VO</creatorcontrib><creatorcontrib>Ermakov, D Yu</creatorcontrib><creatorcontrib>Saraev, AA</creatorcontrib><creatorcontrib>Reshetnikov, SI</creatorcontrib><creatorcontrib>Yakovlev, VA</creatorcontrib><title>Influence of reaction conditions and kinetic analysis of the selective hydrogenation of oleic acid toward fatty alcohols on Ru-Sn-B/Al^sub 2^O^sub 3^ in the flow reactor</title><title>Applied catalysis. B, Environmental</title><description>The hydrogenation of oleic acid (cis-9-octadecenoic acid) into oleyl alcohol (methyl-9-octadecen-1-ol) was studied in the presence of a bimetallic RuSn supported over alumina catalyst in the flow reactor. It was shown that the process should be performed at the temperature range of 280-330 °C, hydrogen pressure of 3.5-5.3 MPa and contact time less than 0.2 h in order to obtain the highest possible yield of desired products (fatty alcohols and waxes). The study by physicochemical methods (XRD, BET, TPR, XPS, TEM) revealed that modification of the catalyst with boron promotes additional simultaneous reduction of the major part of tin and ruthenium oxides, most of which are reduced below 310 °C. Crystalline RuxSny structures with variable composition, which seem to be the active component of the selective hydrogenation catalyst, were found to be formed after the reaction at temperatures higher than 300 °C. Our work demonstarted that a scheme of oleic acid transformations includes formation of waxes by recombination of carboxyl and alkanes intermediates, acid decarboxylation and hydrocracking of waxes to alkanes. Mathematic simulation methods allowed us to estimate rate constants of the process stages and the main kinetic parameters (Ea, k0).</description><subject>Alcohol</subject><subject>Alcohols</subject><subject>Alkanes</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Bimetals</subject><subject>Boron</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Computer simulation</subject><subject>Constants</subject><subject>Contact pressure</subject><subject>Crystal structure</subject><subject>Decarboxylation</subject><subject>Hydrocracking</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Intermediates</subject><subject>Mathematical analysis</subject><subject>Oleic acid</subject><subject>Oleyl alcohol</subject><subject>Oxides</subject><subject>Rate constants</subject><subject>Reactors</subject><subject>Recombination</subject><subject>Ruthenium</subject><subject>Temperature effects</subject><subject>Tin</subject><subject>Transformations (mathematics)</subject><subject>Waxes</subject><subject>X ray photoelectron spectroscopy</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNjsFKxDAYhIMoWF3f4QfPwTZZ3PaoouhJUM9dYvLHZg35NUld-ki-pWn1ATzNwMw3zAGrmnYjuWxbeciquhOXXMqNPGYnKe3quhZStBX7fgjWjxg0AlmIqHR2FEBTMG52CVQw8O4CZqeLV35KLs3dPCAk9FiAL4RhMpHeMKgFLzF5nAHtDGTaq2jAqpwnUF7TQL5MBHga-XPg1xdXvk_jK4j-cVHZgwvLvvW0_z1FccWOrPIJz_70lJ3f3b7c3POPSJ8jprzd0RjLwbRtOimaTnT1Wv6v9QPI-2B0</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Rodina, VO</creator><creator>Ermakov, D Yu</creator><creator>Saraev, AA</creator><creator>Reshetnikov, SI</creator><creator>Yakovlev, VA</creator><general>Elsevier BV</general><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20170715</creationdate><title>Influence of reaction conditions and kinetic analysis of the selective hydrogenation of oleic acid toward fatty alcohols on Ru-Sn-B/Al^sub 2^O^sub 3^ in the flow reactor</title><author>Rodina, VO ; Ermakov, D Yu ; Saraev, AA ; Reshetnikov, SI ; Yakovlev, VA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19321929043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alcohol</topic><topic>Alcohols</topic><topic>Alkanes</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Bimetals</topic><topic>Boron</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Computer simulation</topic><topic>Constants</topic><topic>Contact pressure</topic><topic>Crystal structure</topic><topic>Decarboxylation</topic><topic>Hydrocracking</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Intermediates</topic><topic>Mathematical analysis</topic><topic>Oleic acid</topic><topic>Oleyl alcohol</topic><topic>Oxides</topic><topic>Rate constants</topic><topic>Reactors</topic><topic>Recombination</topic><topic>Ruthenium</topic><topic>Temperature effects</topic><topic>Tin</topic><topic>Transformations (mathematics)</topic><topic>Waxes</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodina, VO</creatorcontrib><creatorcontrib>Ermakov, D Yu</creatorcontrib><creatorcontrib>Saraev, AA</creatorcontrib><creatorcontrib>Reshetnikov, SI</creatorcontrib><creatorcontrib>Yakovlev, VA</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodina, VO</au><au>Ermakov, D Yu</au><au>Saraev, AA</au><au>Reshetnikov, SI</au><au>Yakovlev, VA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of reaction conditions and kinetic analysis of the selective hydrogenation of oleic acid toward fatty alcohols on Ru-Sn-B/Al^sub 2^O^sub 3^ in the flow reactor</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2017-07-15</date><risdate>2017</risdate><volume>209</volume><spage>611</spage><pages>611-</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>The hydrogenation of oleic acid (cis-9-octadecenoic acid) into oleyl alcohol (methyl-9-octadecen-1-ol) was studied in the presence of a bimetallic RuSn supported over alumina catalyst in the flow reactor. It was shown that the process should be performed at the temperature range of 280-330 °C, hydrogen pressure of 3.5-5.3 MPa and contact time less than 0.2 h in order to obtain the highest possible yield of desired products (fatty alcohols and waxes). The study by physicochemical methods (XRD, BET, TPR, XPS, TEM) revealed that modification of the catalyst with boron promotes additional simultaneous reduction of the major part of tin and ruthenium oxides, most of which are reduced below 310 °C. Crystalline RuxSny structures with variable composition, which seem to be the active component of the selective hydrogenation catalyst, were found to be formed after the reaction at temperatures higher than 300 °C. Our work demonstarted that a scheme of oleic acid transformations includes formation of waxes by recombination of carboxyl and alkanes intermediates, acid decarboxylation and hydrocracking of waxes to alkanes. Mathematic simulation methods allowed us to estimate rate constants of the process stages and the main kinetic parameters (Ea, k0).</abstract><cop>Amsterdam</cop><pub>Elsevier BV</pub></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2017-07, Vol.209, p.611
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_1932192904
source ScienceDirect Journals (5 years ago - present)
subjects Alcohol
Alcohols
Alkanes
Aluminum
Aluminum oxide
Bimetals
Boron
Catalysis
Catalysts
Computer simulation
Constants
Contact pressure
Crystal structure
Decarboxylation
Hydrocracking
Hydrogen storage
Hydrogenation
Intermediates
Mathematical analysis
Oleic acid
Oleyl alcohol
Oxides
Rate constants
Reactors
Recombination
Ruthenium
Temperature effects
Tin
Transformations (mathematics)
Waxes
X ray photoelectron spectroscopy
title Influence of reaction conditions and kinetic analysis of the selective hydrogenation of oleic acid toward fatty alcohols on Ru-Sn-B/Al^sub 2^O^sub 3^ in the flow reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20reaction%20conditions%20and%20kinetic%20analysis%20of%20the%20selective%20hydrogenation%20of%20oleic%20acid%20toward%20fatty%20alcohols%20on%20Ru-Sn-B/Al%5Esub%202%5EO%5Esub%203%5E%20in%20the%20flow%20reactor&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Rodina,%20VO&rft.date=2017-07-15&rft.volume=209&rft.spage=611&rft.pages=611-&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/&rft_dat=%3Cproquest%3E1932192904%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932192904&rft_id=info:pmid/&rfr_iscdi=true