Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks

Nonlinear control methods have been researched with the objective of improving performance of control loop systems. Among such control methods, nonlinear model-based predictive control (NMPC) strategies present significant importance, mainly due to explicit performance optimization and constraint ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of control, automation & electrical systems automation & electrical systems, 2017-10, Vol.28 (5), p.623-634
Hauptverfasser: Negri, Gabriel H., Cavalca, Mariana S. M., de Oliveira, José, Araújo, Celso J. F., Celiberto, Luiz A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 5
container_start_page 623
container_title Journal of control, automation & electrical systems
container_volume 28
creator Negri, Gabriel H.
Cavalca, Mariana S. M.
de Oliveira, José
Araújo, Celso J. F.
Celiberto, Luiz A.
description Nonlinear control methods have been researched with the objective of improving performance of control loop systems. Among such control methods, nonlinear model-based predictive control (NMPC) strategies present significant importance, mainly due to explicit performance optimization and constraint handling. NMPC depends on a representative nonlinear model of the process to be controlled and an adequate optimization method. This work focuses on these two aspects. Simulation tests with a wastewater treatment process model are presented, to evaluate the use of two optimization methods, differential evolution and bound optimization by quadratic approximation (BOBYQA), under different conditions. Experimental results using BOBYQA and a fully connected cascade artificial neural network in a pressure process are presented, showing a performance improvement comparing to a linear model predictive controller.
doi_str_mv 10.1007/s40313-017-0327-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932191563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932191563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4e725eee51142259e30f376d8ea6fa2f0192b380e28d390021bfc1bef9b991ce3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhiMEElXhB7BZYjb47ObDYwktIJWWgc6Wk1yKSxoHOy0F8eNJFYRYmO6G533v9ATBBbArYCy-9iMmQFAGMWWCx3R_FAw4yJCKRMrj3z1hp8G592vGGCTAIQwHwddkp6utbo2tiS3J3NaVqVE78mgLrOiN9liQJ4eFyVuzQ5LaunW2IuOmcVbnL-jJ0pt6RW7RmZ0-MHTqEMmiac3GfPbNui7INE3JHLdOV91o36179WfBSakrj-c_cxgsp5Pn9J7OFncP6XhGcwFRS0cY8xARQ4AR56FEwUoRR0WCOio1LxlInomEIU8KIRnjkJU5ZFjKTErIUQyDy763-_lti75Va7t1dXdSgRSdHQgj0VHQU7mz3jssVePMRrsPBUwdPKves-o8q4Nnte8yvM_4jq1X6P40_xv6BlE-gZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932191563</pqid></control><display><type>article</type><title>Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks</title><source>SpringerNature Journals</source><creator>Negri, Gabriel H. ; Cavalca, Mariana S. M. ; de Oliveira, José ; Araújo, Celso J. F. ; Celiberto, Luiz A.</creator><creatorcontrib>Negri, Gabriel H. ; Cavalca, Mariana S. M. ; de Oliveira, José ; Araújo, Celso J. F. ; Celiberto, Luiz A.</creatorcontrib><description>Nonlinear control methods have been researched with the objective of improving performance of control loop systems. Among such control methods, nonlinear model-based predictive control (NMPC) strategies present significant importance, mainly due to explicit performance optimization and constraint handling. NMPC depends on a representative nonlinear model of the process to be controlled and an adequate optimization method. This work focuses on these two aspects. Simulation tests with a wastewater treatment process model are presented, to evaluate the use of two optimization methods, differential evolution and bound optimization by quadratic approximation (BOBYQA), under different conditions. Experimental results using BOBYQA and a fully connected cascade artificial neural network in a pressure process are presented, showing a performance improvement comparing to a linear model predictive controller.</description><identifier>ISSN: 2195-3880</identifier><identifier>EISSN: 2195-3899</identifier><identifier>DOI: 10.1007/s40313-017-0327-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Artificial neural networks ; Computer simulation ; Control ; Control and Systems Theory ; Control methods ; Electrical Engineering ; Engineering ; Mechatronics ; Neural networks ; Nonlinear control ; Optimization ; Predictive control ; Robotics ; Robotics and Automation ; Wastewater treatment</subject><ispartof>Journal of control, automation &amp; electrical systems, 2017-10, Vol.28 (5), p.623-634</ispartof><rights>Brazilian Society for Automatics--SBA 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4e725eee51142259e30f376d8ea6fa2f0192b380e28d390021bfc1bef9b991ce3</citedby><cites>FETCH-LOGICAL-c316t-4e725eee51142259e30f376d8ea6fa2f0192b380e28d390021bfc1bef9b991ce3</cites><orcidid>0000-0002-0104-0595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40313-017-0327-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40313-017-0327-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Negri, Gabriel H.</creatorcontrib><creatorcontrib>Cavalca, Mariana S. M.</creatorcontrib><creatorcontrib>de Oliveira, José</creatorcontrib><creatorcontrib>Araújo, Celso J. F.</creatorcontrib><creatorcontrib>Celiberto, Luiz A.</creatorcontrib><title>Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks</title><title>Journal of control, automation &amp; electrical systems</title><addtitle>J Control Autom Electr Syst</addtitle><description>Nonlinear control methods have been researched with the objective of improving performance of control loop systems. Among such control methods, nonlinear model-based predictive control (NMPC) strategies present significant importance, mainly due to explicit performance optimization and constraint handling. NMPC depends on a representative nonlinear model of the process to be controlled and an adequate optimization method. This work focuses on these two aspects. Simulation tests with a wastewater treatment process model are presented, to evaluate the use of two optimization methods, differential evolution and bound optimization by quadratic approximation (BOBYQA), under different conditions. Experimental results using BOBYQA and a fully connected cascade artificial neural network in a pressure process are presented, showing a performance improvement comparing to a linear model predictive controller.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Control methods</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Wastewater treatment</subject><issn>2195-3880</issn><issn>2195-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhiMEElXhB7BZYjb47ObDYwktIJWWgc6Wk1yKSxoHOy0F8eNJFYRYmO6G533v9ATBBbArYCy-9iMmQFAGMWWCx3R_FAw4yJCKRMrj3z1hp8G592vGGCTAIQwHwddkp6utbo2tiS3J3NaVqVE78mgLrOiN9liQJ4eFyVuzQ5LaunW2IuOmcVbnL-jJ0pt6RW7RmZ0-MHTqEMmiac3GfPbNui7INE3JHLdOV91o36179WfBSakrj-c_cxgsp5Pn9J7OFncP6XhGcwFRS0cY8xARQ4AR56FEwUoRR0WCOio1LxlInomEIU8KIRnjkJU5ZFjKTErIUQyDy763-_lti75Va7t1dXdSgRSdHQgj0VHQU7mz3jssVePMRrsPBUwdPKves-o8q4Nnte8yvM_4jq1X6P40_xv6BlE-gZA</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Negri, Gabriel H.</creator><creator>Cavalca, Mariana S. M.</creator><creator>de Oliveira, José</creator><creator>Araújo, Celso J. F.</creator><creator>Celiberto, Luiz A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0104-0595</orcidid></search><sort><creationdate>20171001</creationdate><title>Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks</title><author>Negri, Gabriel H. ; Cavalca, Mariana S. M. ; de Oliveira, José ; Araújo, Celso J. F. ; Celiberto, Luiz A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4e725eee51142259e30f376d8ea6fa2f0192b380e28d390021bfc1bef9b991ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Control methods</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Wastewater treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Negri, Gabriel H.</creatorcontrib><creatorcontrib>Cavalca, Mariana S. M.</creatorcontrib><creatorcontrib>de Oliveira, José</creatorcontrib><creatorcontrib>Araújo, Celso J. F.</creatorcontrib><creatorcontrib>Celiberto, Luiz A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of control, automation &amp; electrical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Negri, Gabriel H.</au><au>Cavalca, Mariana S. M.</au><au>de Oliveira, José</au><au>Araújo, Celso J. F.</au><au>Celiberto, Luiz A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks</atitle><jtitle>Journal of control, automation &amp; electrical systems</jtitle><stitle>J Control Autom Electr Syst</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>28</volume><issue>5</issue><spage>623</spage><epage>634</epage><pages>623-634</pages><issn>2195-3880</issn><eissn>2195-3899</eissn><abstract>Nonlinear control methods have been researched with the objective of improving performance of control loop systems. Among such control methods, nonlinear model-based predictive control (NMPC) strategies present significant importance, mainly due to explicit performance optimization and constraint handling. NMPC depends on a representative nonlinear model of the process to be controlled and an adequate optimization method. This work focuses on these two aspects. Simulation tests with a wastewater treatment process model are presented, to evaluate the use of two optimization methods, differential evolution and bound optimization by quadratic approximation (BOBYQA), under different conditions. Experimental results using BOBYQA and a fully connected cascade artificial neural network in a pressure process are presented, showing a performance improvement comparing to a linear model predictive controller.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40313-017-0327-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0104-0595</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-3880
ispartof Journal of control, automation & electrical systems, 2017-10, Vol.28 (5), p.623-634
issn 2195-3880
2195-3899
language eng
recordid cdi_proquest_journals_1932191563
source SpringerNature Journals
subjects Approximation
Artificial neural networks
Computer simulation
Control
Control and Systems Theory
Control methods
Electrical Engineering
Engineering
Mechatronics
Neural networks
Nonlinear control
Optimization
Predictive control
Robotics
Robotics and Automation
Wastewater treatment
title Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Nonlinear%20Model-Based%20Predictive%20Control%20Approaches%20Using%20Derivative-Free%20Optimization%20and%20FCC%20Neural%20Networks&rft.jtitle=Journal%20of%20control,%20automation%20&%20electrical%20systems&rft.au=Negri,%20Gabriel%20H.&rft.date=2017-10-01&rft.volume=28&rft.issue=5&rft.spage=623&rft.epage=634&rft.pages=623-634&rft.issn=2195-3880&rft.eissn=2195-3899&rft_id=info:doi/10.1007/s40313-017-0327-x&rft_dat=%3Cproquest_cross%3E1932191563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932191563&rft_id=info:pmid/&rfr_iscdi=true