Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks
Nonlinear control methods have been researched with the objective of improving performance of control loop systems. Among such control methods, nonlinear model-based predictive control (NMPC) strategies present significant importance, mainly due to explicit performance optimization and constraint ha...
Gespeichert in:
Veröffentlicht in: | Journal of control, automation & electrical systems automation & electrical systems, 2017-10, Vol.28 (5), p.623-634 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | 5 |
container_start_page | 623 |
container_title | Journal of control, automation & electrical systems |
container_volume | 28 |
creator | Negri, Gabriel H. Cavalca, Mariana S. M. de Oliveira, José Araújo, Celso J. F. Celiberto, Luiz A. |
description | Nonlinear control methods have been researched with the objective of improving performance of control loop systems. Among such control methods, nonlinear model-based predictive control (NMPC) strategies present significant importance, mainly due to explicit performance optimization and constraint handling. NMPC depends on a representative nonlinear model of the process to be controlled and an adequate optimization method. This work focuses on these two aspects. Simulation tests with a wastewater treatment process model are presented, to evaluate the use of two optimization methods, differential evolution and bound optimization by quadratic approximation (BOBYQA), under different conditions. Experimental results using BOBYQA and a fully connected cascade artificial neural network in a pressure process are presented, showing a performance improvement comparing to a linear model predictive controller. |
doi_str_mv | 10.1007/s40313-017-0327-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932191563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932191563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4e725eee51142259e30f376d8ea6fa2f0192b380e28d390021bfc1bef9b991ce3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhiMEElXhB7BZYjb47ObDYwktIJWWgc6Wk1yKSxoHOy0F8eNJFYRYmO6G533v9ATBBbArYCy-9iMmQFAGMWWCx3R_FAw4yJCKRMrj3z1hp8G592vGGCTAIQwHwddkp6utbo2tiS3J3NaVqVE78mgLrOiN9liQJ4eFyVuzQ5LaunW2IuOmcVbnL-jJ0pt6RW7RmZ0-MHTqEMmiac3GfPbNui7INE3JHLdOV91o36179WfBSakrj-c_cxgsp5Pn9J7OFncP6XhGcwFRS0cY8xARQ4AR56FEwUoRR0WCOio1LxlInomEIU8KIRnjkJU5ZFjKTErIUQyDy763-_lti75Va7t1dXdSgRSdHQgj0VHQU7mz3jssVePMRrsPBUwdPKves-o8q4Nnte8yvM_4jq1X6P40_xv6BlE-gZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932191563</pqid></control><display><type>article</type><title>Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks</title><source>SpringerNature Journals</source><creator>Negri, Gabriel H. ; Cavalca, Mariana S. M. ; de Oliveira, José ; Araújo, Celso J. F. ; Celiberto, Luiz A.</creator><creatorcontrib>Negri, Gabriel H. ; Cavalca, Mariana S. M. ; de Oliveira, José ; Araújo, Celso J. F. ; Celiberto, Luiz A.</creatorcontrib><description>Nonlinear control methods have been researched with the objective of improving performance of control loop systems. Among such control methods, nonlinear model-based predictive control (NMPC) strategies present significant importance, mainly due to explicit performance optimization and constraint handling. NMPC depends on a representative nonlinear model of the process to be controlled and an adequate optimization method. This work focuses on these two aspects. Simulation tests with a wastewater treatment process model are presented, to evaluate the use of two optimization methods, differential evolution and bound optimization by quadratic approximation (BOBYQA), under different conditions. Experimental results using BOBYQA and a fully connected cascade artificial neural network in a pressure process are presented, showing a performance improvement comparing to a linear model predictive controller.</description><identifier>ISSN: 2195-3880</identifier><identifier>EISSN: 2195-3899</identifier><identifier>DOI: 10.1007/s40313-017-0327-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Artificial neural networks ; Computer simulation ; Control ; Control and Systems Theory ; Control methods ; Electrical Engineering ; Engineering ; Mechatronics ; Neural networks ; Nonlinear control ; Optimization ; Predictive control ; Robotics ; Robotics and Automation ; Wastewater treatment</subject><ispartof>Journal of control, automation & electrical systems, 2017-10, Vol.28 (5), p.623-634</ispartof><rights>Brazilian Society for Automatics--SBA 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4e725eee51142259e30f376d8ea6fa2f0192b380e28d390021bfc1bef9b991ce3</citedby><cites>FETCH-LOGICAL-c316t-4e725eee51142259e30f376d8ea6fa2f0192b380e28d390021bfc1bef9b991ce3</cites><orcidid>0000-0002-0104-0595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40313-017-0327-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40313-017-0327-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Negri, Gabriel H.</creatorcontrib><creatorcontrib>Cavalca, Mariana S. M.</creatorcontrib><creatorcontrib>de Oliveira, José</creatorcontrib><creatorcontrib>Araújo, Celso J. F.</creatorcontrib><creatorcontrib>Celiberto, Luiz A.</creatorcontrib><title>Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks</title><title>Journal of control, automation & electrical systems</title><addtitle>J Control Autom Electr Syst</addtitle><description>Nonlinear control methods have been researched with the objective of improving performance of control loop systems. Among such control methods, nonlinear model-based predictive control (NMPC) strategies present significant importance, mainly due to explicit performance optimization and constraint handling. NMPC depends on a representative nonlinear model of the process to be controlled and an adequate optimization method. This work focuses on these two aspects. Simulation tests with a wastewater treatment process model are presented, to evaluate the use of two optimization methods, differential evolution and bound optimization by quadratic approximation (BOBYQA), under different conditions. Experimental results using BOBYQA and a fully connected cascade artificial neural network in a pressure process are presented, showing a performance improvement comparing to a linear model predictive controller.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Control methods</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Wastewater treatment</subject><issn>2195-3880</issn><issn>2195-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhiMEElXhB7BZYjb47ObDYwktIJWWgc6Wk1yKSxoHOy0F8eNJFYRYmO6G533v9ATBBbArYCy-9iMmQFAGMWWCx3R_FAw4yJCKRMrj3z1hp8G592vGGCTAIQwHwddkp6utbo2tiS3J3NaVqVE78mgLrOiN9liQJ4eFyVuzQ5LaunW2IuOmcVbnL-jJ0pt6RW7RmZ0-MHTqEMmiac3GfPbNui7INE3JHLdOV91o36179WfBSakrj-c_cxgsp5Pn9J7OFncP6XhGcwFRS0cY8xARQ4AR56FEwUoRR0WCOio1LxlInomEIU8KIRnjkJU5ZFjKTErIUQyDy763-_lti75Va7t1dXdSgRSdHQgj0VHQU7mz3jssVePMRrsPBUwdPKves-o8q4Nnte8yvM_4jq1X6P40_xv6BlE-gZA</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Negri, Gabriel H.</creator><creator>Cavalca, Mariana S. M.</creator><creator>de Oliveira, José</creator><creator>Araújo, Celso J. F.</creator><creator>Celiberto, Luiz A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0104-0595</orcidid></search><sort><creationdate>20171001</creationdate><title>Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks</title><author>Negri, Gabriel H. ; Cavalca, Mariana S. M. ; de Oliveira, José ; Araújo, Celso J. F. ; Celiberto, Luiz A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4e725eee51142259e30f376d8ea6fa2f0192b380e28d390021bfc1bef9b991ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Control methods</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Wastewater treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Negri, Gabriel H.</creatorcontrib><creatorcontrib>Cavalca, Mariana S. M.</creatorcontrib><creatorcontrib>de Oliveira, José</creatorcontrib><creatorcontrib>Araújo, Celso J. F.</creatorcontrib><creatorcontrib>Celiberto, Luiz A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of control, automation & electrical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Negri, Gabriel H.</au><au>Cavalca, Mariana S. M.</au><au>de Oliveira, José</au><au>Araújo, Celso J. F.</au><au>Celiberto, Luiz A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks</atitle><jtitle>Journal of control, automation & electrical systems</jtitle><stitle>J Control Autom Electr Syst</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>28</volume><issue>5</issue><spage>623</spage><epage>634</epage><pages>623-634</pages><issn>2195-3880</issn><eissn>2195-3899</eissn><abstract>Nonlinear control methods have been researched with the objective of improving performance of control loop systems. Among such control methods, nonlinear model-based predictive control (NMPC) strategies present significant importance, mainly due to explicit performance optimization and constraint handling. NMPC depends on a representative nonlinear model of the process to be controlled and an adequate optimization method. This work focuses on these two aspects. Simulation tests with a wastewater treatment process model are presented, to evaluate the use of two optimization methods, differential evolution and bound optimization by quadratic approximation (BOBYQA), under different conditions. Experimental results using BOBYQA and a fully connected cascade artificial neural network in a pressure process are presented, showing a performance improvement comparing to a linear model predictive controller.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40313-017-0327-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0104-0595</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-3880 |
ispartof | Journal of control, automation & electrical systems, 2017-10, Vol.28 (5), p.623-634 |
issn | 2195-3880 2195-3899 |
language | eng |
recordid | cdi_proquest_journals_1932191563 |
source | SpringerNature Journals |
subjects | Approximation Artificial neural networks Computer simulation Control Control and Systems Theory Control methods Electrical Engineering Engineering Mechatronics Neural networks Nonlinear control Optimization Predictive control Robotics Robotics and Automation Wastewater treatment |
title | Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Nonlinear%20Model-Based%20Predictive%20Control%20Approaches%20Using%20Derivative-Free%20Optimization%20and%20FCC%20Neural%20Networks&rft.jtitle=Journal%20of%20control,%20automation%20&%20electrical%20systems&rft.au=Negri,%20Gabriel%20H.&rft.date=2017-10-01&rft.volume=28&rft.issue=5&rft.spage=623&rft.epage=634&rft.pages=623-634&rft.issn=2195-3880&rft.eissn=2195-3899&rft_id=info:doi/10.1007/s40313-017-0327-x&rft_dat=%3Cproquest_cross%3E1932191563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932191563&rft_id=info:pmid/&rfr_iscdi=true |