Discovering suspicious behavior in multilayer social networks

Discovering suspicious and illicit behavior in social networks is a significant problem in social network analysis. The patterns of interactions of suspicious users are quite different from their peers and can be identified by using anomaly detection techniques. The existing anomaly detection techni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in human behavior 2017-08, Vol.73, p.568-582
Hauptverfasser: Bindu, P.V., Thilagam, P. Santhi, Ahuja, Deepesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 582
container_issue
container_start_page 568
container_title Computers in human behavior
container_volume 73
creator Bindu, P.V.
Thilagam, P. Santhi
Ahuja, Deepesh
description Discovering suspicious and illicit behavior in social networks is a significant problem in social network analysis. The patterns of interactions of suspicious users are quite different from their peers and can be identified by using anomaly detection techniques. The existing anomaly detection techniques on social networks focus on networks with only one type of interaction among the users. However, human interactions are inherently multiplex in nature with multiple types of relationships existing among the users, leading to the formation of multilayer social networks. In this paper, we investigate the problem of anomaly detection on multilayer social networks by combining the rich information available in multiple network layers. We propose a pioneer approach namely ADOMS (Anomaly Detection On Multilayer Social networks), an unsupervised, parameter-free, and network feature-based methodology, that automatically detects anomalous users in a multilayer social network and rank them according to their anomalousness. We consider the two well-known anomalous patterns of clique/near-clique and star/near-star anomalies in social networks, and users are ranked according to the degree of similarity of their neighborhoods in different layers to stars or cliques. Experimental results on several real-world multilayer network datasets demonstrate that our approach can effectively detect anomalous nodes in multilayer social networks. •Anomalies in social networks can signify suspicious and illegal behavior.•Anomaly detection is a significant problem in social network analysis.•Individuals can interact in multiple ways simultaneously forming multilayer networks.•Introducing and studying anomaly detection problem on multilayer social networks.•A network feature-based approach to rank the nodes according to their anomalousness.
doi_str_mv 10.1016/j.chb.2017.04.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932190953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0747563217302303</els_id><sourcerecordid>1932190953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-67b9a50c68860f67b991dab1465b6d22a68c36148b1c8fd4edf7cd240f3b38193</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hV4txiJ23aCnFAY3xIk7jAOUqTlKV0zUjaof17Mo0zJ8vy-9jWQ8g1QoaA_LbL1LrJKGCZQZ4B4AmZYVWytOQ1PSUzKPMyLTij5-QihA4AigL4jNw_2qDczng7fCZhClurrJtC0pi13FnnEzskm6kfbS_3xifBKSv7ZDDjj_Nf4ZKctbIP5uqvzsnH0_J98ZKu3p5fFw-rVDFajCkvm1oWoHhVcWgPXY1aNpjzouGaUskrxTjmVYOqanVudFsqTXNoWcMqrNmc3Bz3br37nkwYRecmP8STIk4p1lAXLKbwmFLeheBNK7bebqTfCwRxsCQ6ES2JgyUBuYiWInN3ZEx8f2eNF0FZMyijrTdqFNrZf-hfEMVvaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932190953</pqid></control><display><type>article</type><title>Discovering suspicious behavior in multilayer social networks</title><source>Sociological Abstracts</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bindu, P.V. ; Thilagam, P. Santhi ; Ahuja, Deepesh</creator><creatorcontrib>Bindu, P.V. ; Thilagam, P. Santhi ; Ahuja, Deepesh</creatorcontrib><description>Discovering suspicious and illicit behavior in social networks is a significant problem in social network analysis. The patterns of interactions of suspicious users are quite different from their peers and can be identified by using anomaly detection techniques. The existing anomaly detection techniques on social networks focus on networks with only one type of interaction among the users. However, human interactions are inherently multiplex in nature with multiple types of relationships existing among the users, leading to the formation of multilayer social networks. In this paper, we investigate the problem of anomaly detection on multilayer social networks by combining the rich information available in multiple network layers. We propose a pioneer approach namely ADOMS (Anomaly Detection On Multilayer Social networks), an unsupervised, parameter-free, and network feature-based methodology, that automatically detects anomalous users in a multilayer social network and rank them according to their anomalousness. We consider the two well-known anomalous patterns of clique/near-clique and star/near-star anomalies in social networks, and users are ranked according to the degree of similarity of their neighborhoods in different layers to stars or cliques. Experimental results on several real-world multilayer network datasets demonstrate that our approach can effectively detect anomalous nodes in multilayer social networks. •Anomalies in social networks can signify suspicious and illegal behavior.•Anomaly detection is a significant problem in social network analysis.•Individuals can interact in multiple ways simultaneously forming multilayer networks.•Introducing and studying anomaly detection problem on multilayer social networks.•A network feature-based approach to rank the nodes according to their anomalousness.</description><identifier>ISSN: 0747-5632</identifier><identifier>EISSN: 1873-7692</identifier><identifier>DOI: 10.1016/j.chb.2017.04.001</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Anomalies ; Anomaly detection ; Cliques ; Graph mining ; Multi-graphs ; Multiplexing ; Network analysis ; Online social networks ; Outlier detection ; Peers ; Social interaction ; Social network analysis ; Social networks ; Stars ; Studies ; User behavior</subject><ispartof>Computers in human behavior, 2017-08, Vol.73, p.568-582</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-67b9a50c68860f67b991dab1465b6d22a68c36148b1c8fd4edf7cd240f3b38193</citedby><cites>FETCH-LOGICAL-c325t-67b9a50c68860f67b991dab1465b6d22a68c36148b1c8fd4edf7cd240f3b38193</cites><orcidid>0000-0002-3723-9774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chb.2017.04.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,33773,45994</link.rule.ids></links><search><creatorcontrib>Bindu, P.V.</creatorcontrib><creatorcontrib>Thilagam, P. Santhi</creatorcontrib><creatorcontrib>Ahuja, Deepesh</creatorcontrib><title>Discovering suspicious behavior in multilayer social networks</title><title>Computers in human behavior</title><description>Discovering suspicious and illicit behavior in social networks is a significant problem in social network analysis. The patterns of interactions of suspicious users are quite different from their peers and can be identified by using anomaly detection techniques. The existing anomaly detection techniques on social networks focus on networks with only one type of interaction among the users. However, human interactions are inherently multiplex in nature with multiple types of relationships existing among the users, leading to the formation of multilayer social networks. In this paper, we investigate the problem of anomaly detection on multilayer social networks by combining the rich information available in multiple network layers. We propose a pioneer approach namely ADOMS (Anomaly Detection On Multilayer Social networks), an unsupervised, parameter-free, and network feature-based methodology, that automatically detects anomalous users in a multilayer social network and rank them according to their anomalousness. We consider the two well-known anomalous patterns of clique/near-clique and star/near-star anomalies in social networks, and users are ranked according to the degree of similarity of their neighborhoods in different layers to stars or cliques. Experimental results on several real-world multilayer network datasets demonstrate that our approach can effectively detect anomalous nodes in multilayer social networks. •Anomalies in social networks can signify suspicious and illegal behavior.•Anomaly detection is a significant problem in social network analysis.•Individuals can interact in multiple ways simultaneously forming multilayer networks.•Introducing and studying anomaly detection problem on multilayer social networks.•A network feature-based approach to rank the nodes according to their anomalousness.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Cliques</subject><subject>Graph mining</subject><subject>Multi-graphs</subject><subject>Multiplexing</subject><subject>Network analysis</subject><subject>Online social networks</subject><subject>Outlier detection</subject><subject>Peers</subject><subject>Social interaction</subject><subject>Social network analysis</subject><subject>Social networks</subject><subject>Stars</subject><subject>Studies</subject><subject>User behavior</subject><issn>0747-5632</issn><issn>1873-7692</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNp9kE1PwzAMhiMEEmPwA7hV4txiJ23aCnFAY3xIk7jAOUqTlKV0zUjaof17Mo0zJ8vy-9jWQ8g1QoaA_LbL1LrJKGCZQZ4B4AmZYVWytOQ1PSUzKPMyLTij5-QihA4AigL4jNw_2qDczng7fCZhClurrJtC0pi13FnnEzskm6kfbS_3xifBKSv7ZDDjj_Nf4ZKctbIP5uqvzsnH0_J98ZKu3p5fFw-rVDFajCkvm1oWoHhVcWgPXY1aNpjzouGaUskrxTjmVYOqanVudFsqTXNoWcMqrNmc3Bz3br37nkwYRecmP8STIk4p1lAXLKbwmFLeheBNK7bebqTfCwRxsCQ6ES2JgyUBuYiWInN3ZEx8f2eNF0FZMyijrTdqFNrZf-hfEMVvaw</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Bindu, P.V.</creator><creator>Thilagam, P. Santhi</creator><creator>Ahuja, Deepesh</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U4</scope><scope>8FD</scope><scope>BHHNA</scope><scope>DWI</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>WZK</scope><orcidid>https://orcid.org/0000-0002-3723-9774</orcidid></search><sort><creationdate>201708</creationdate><title>Discovering suspicious behavior in multilayer social networks</title><author>Bindu, P.V. ; Thilagam, P. Santhi ; Ahuja, Deepesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-67b9a50c68860f67b991dab1465b6d22a68c36148b1c8fd4edf7cd240f3b38193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Cliques</topic><topic>Graph mining</topic><topic>Multi-graphs</topic><topic>Multiplexing</topic><topic>Network analysis</topic><topic>Online social networks</topic><topic>Outlier detection</topic><topic>Peers</topic><topic>Social interaction</topic><topic>Social network analysis</topic><topic>Social networks</topic><topic>Stars</topic><topic>Studies</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bindu, P.V.</creatorcontrib><creatorcontrib>Thilagam, P. Santhi</creatorcontrib><creatorcontrib>Ahuja, Deepesh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Technology Research Database</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Computers in human behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bindu, P.V.</au><au>Thilagam, P. Santhi</au><au>Ahuja, Deepesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering suspicious behavior in multilayer social networks</atitle><jtitle>Computers in human behavior</jtitle><date>2017-08</date><risdate>2017</risdate><volume>73</volume><spage>568</spage><epage>582</epage><pages>568-582</pages><issn>0747-5632</issn><eissn>1873-7692</eissn><abstract>Discovering suspicious and illicit behavior in social networks is a significant problem in social network analysis. The patterns of interactions of suspicious users are quite different from their peers and can be identified by using anomaly detection techniques. The existing anomaly detection techniques on social networks focus on networks with only one type of interaction among the users. However, human interactions are inherently multiplex in nature with multiple types of relationships existing among the users, leading to the formation of multilayer social networks. In this paper, we investigate the problem of anomaly detection on multilayer social networks by combining the rich information available in multiple network layers. We propose a pioneer approach namely ADOMS (Anomaly Detection On Multilayer Social networks), an unsupervised, parameter-free, and network feature-based methodology, that automatically detects anomalous users in a multilayer social network and rank them according to their anomalousness. We consider the two well-known anomalous patterns of clique/near-clique and star/near-star anomalies in social networks, and users are ranked according to the degree of similarity of their neighborhoods in different layers to stars or cliques. Experimental results on several real-world multilayer network datasets demonstrate that our approach can effectively detect anomalous nodes in multilayer social networks. •Anomalies in social networks can signify suspicious and illegal behavior.•Anomaly detection is a significant problem in social network analysis.•Individuals can interact in multiple ways simultaneously forming multilayer networks.•Introducing and studying anomaly detection problem on multilayer social networks.•A network feature-based approach to rank the nodes according to their anomalousness.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.chb.2017.04.001</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3723-9774</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0747-5632
ispartof Computers in human behavior, 2017-08, Vol.73, p.568-582
issn 0747-5632
1873-7692
language eng
recordid cdi_proquest_journals_1932190953
source Sociological Abstracts; ScienceDirect Journals (5 years ago - present)
subjects Anomalies
Anomaly detection
Cliques
Graph mining
Multi-graphs
Multiplexing
Network analysis
Online social networks
Outlier detection
Peers
Social interaction
Social network analysis
Social networks
Stars
Studies
User behavior
title Discovering suspicious behavior in multilayer social networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20suspicious%20behavior%20in%20multilayer%20social%20networks&rft.jtitle=Computers%20in%20human%20behavior&rft.au=Bindu,%20P.V.&rft.date=2017-08&rft.volume=73&rft.spage=568&rft.epage=582&rft.pages=568-582&rft.issn=0747-5632&rft.eissn=1873-7692&rft_id=info:doi/10.1016/j.chb.2017.04.001&rft_dat=%3Cproquest_cross%3E1932190953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932190953&rft_id=info:pmid/&rft_els_id=S0747563217302303&rfr_iscdi=true