Discovering suspicious behavior in multilayer social networks
Discovering suspicious and illicit behavior in social networks is a significant problem in social network analysis. The patterns of interactions of suspicious users are quite different from their peers and can be identified by using anomaly detection techniques. The existing anomaly detection techni...
Gespeichert in:
Veröffentlicht in: | Computers in human behavior 2017-08, Vol.73, p.568-582 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 582 |
---|---|
container_issue | |
container_start_page | 568 |
container_title | Computers in human behavior |
container_volume | 73 |
creator | Bindu, P.V. Thilagam, P. Santhi Ahuja, Deepesh |
description | Discovering suspicious and illicit behavior in social networks is a significant problem in social network analysis. The patterns of interactions of suspicious users are quite different from their peers and can be identified by using anomaly detection techniques. The existing anomaly detection techniques on social networks focus on networks with only one type of interaction among the users. However, human interactions are inherently multiplex in nature with multiple types of relationships existing among the users, leading to the formation of multilayer social networks. In this paper, we investigate the problem of anomaly detection on multilayer social networks by combining the rich information available in multiple network layers. We propose a pioneer approach namely ADOMS (Anomaly Detection On Multilayer Social networks), an unsupervised, parameter-free, and network feature-based methodology, that automatically detects anomalous users in a multilayer social network and rank them according to their anomalousness. We consider the two well-known anomalous patterns of clique/near-clique and star/near-star anomalies in social networks, and users are ranked according to the degree of similarity of their neighborhoods in different layers to stars or cliques. Experimental results on several real-world multilayer network datasets demonstrate that our approach can effectively detect anomalous nodes in multilayer social networks.
•Anomalies in social networks can signify suspicious and illegal behavior.•Anomaly detection is a significant problem in social network analysis.•Individuals can interact in multiple ways simultaneously forming multilayer networks.•Introducing and studying anomaly detection problem on multilayer social networks.•A network feature-based approach to rank the nodes according to their anomalousness. |
doi_str_mv | 10.1016/j.chb.2017.04.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932190953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0747563217302303</els_id><sourcerecordid>1932190953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-67b9a50c68860f67b991dab1465b6d22a68c36148b1c8fd4edf7cd240f3b38193</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hV4txiJ23aCnFAY3xIk7jAOUqTlKV0zUjaof17Mo0zJ8vy-9jWQ8g1QoaA_LbL1LrJKGCZQZ4B4AmZYVWytOQ1PSUzKPMyLTij5-QihA4AigL4jNw_2qDczng7fCZhClurrJtC0pi13FnnEzskm6kfbS_3xifBKSv7ZDDjj_Nf4ZKctbIP5uqvzsnH0_J98ZKu3p5fFw-rVDFajCkvm1oWoHhVcWgPXY1aNpjzouGaUskrxTjmVYOqanVudFsqTXNoWcMqrNmc3Bz3br37nkwYRecmP8STIk4p1lAXLKbwmFLeheBNK7bebqTfCwRxsCQ6ES2JgyUBuYiWInN3ZEx8f2eNF0FZMyijrTdqFNrZf-hfEMVvaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932190953</pqid></control><display><type>article</type><title>Discovering suspicious behavior in multilayer social networks</title><source>Sociological Abstracts</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bindu, P.V. ; Thilagam, P. Santhi ; Ahuja, Deepesh</creator><creatorcontrib>Bindu, P.V. ; Thilagam, P. Santhi ; Ahuja, Deepesh</creatorcontrib><description>Discovering suspicious and illicit behavior in social networks is a significant problem in social network analysis. The patterns of interactions of suspicious users are quite different from their peers and can be identified by using anomaly detection techniques. The existing anomaly detection techniques on social networks focus on networks with only one type of interaction among the users. However, human interactions are inherently multiplex in nature with multiple types of relationships existing among the users, leading to the formation of multilayer social networks. In this paper, we investigate the problem of anomaly detection on multilayer social networks by combining the rich information available in multiple network layers. We propose a pioneer approach namely ADOMS (Anomaly Detection On Multilayer Social networks), an unsupervised, parameter-free, and network feature-based methodology, that automatically detects anomalous users in a multilayer social network and rank them according to their anomalousness. We consider the two well-known anomalous patterns of clique/near-clique and star/near-star anomalies in social networks, and users are ranked according to the degree of similarity of their neighborhoods in different layers to stars or cliques. Experimental results on several real-world multilayer network datasets demonstrate that our approach can effectively detect anomalous nodes in multilayer social networks.
•Anomalies in social networks can signify suspicious and illegal behavior.•Anomaly detection is a significant problem in social network analysis.•Individuals can interact in multiple ways simultaneously forming multilayer networks.•Introducing and studying anomaly detection problem on multilayer social networks.•A network feature-based approach to rank the nodes according to their anomalousness.</description><identifier>ISSN: 0747-5632</identifier><identifier>EISSN: 1873-7692</identifier><identifier>DOI: 10.1016/j.chb.2017.04.001</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Anomalies ; Anomaly detection ; Cliques ; Graph mining ; Multi-graphs ; Multiplexing ; Network analysis ; Online social networks ; Outlier detection ; Peers ; Social interaction ; Social network analysis ; Social networks ; Stars ; Studies ; User behavior</subject><ispartof>Computers in human behavior, 2017-08, Vol.73, p.568-582</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-67b9a50c68860f67b991dab1465b6d22a68c36148b1c8fd4edf7cd240f3b38193</citedby><cites>FETCH-LOGICAL-c325t-67b9a50c68860f67b991dab1465b6d22a68c36148b1c8fd4edf7cd240f3b38193</cites><orcidid>0000-0002-3723-9774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chb.2017.04.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,33773,45994</link.rule.ids></links><search><creatorcontrib>Bindu, P.V.</creatorcontrib><creatorcontrib>Thilagam, P. Santhi</creatorcontrib><creatorcontrib>Ahuja, Deepesh</creatorcontrib><title>Discovering suspicious behavior in multilayer social networks</title><title>Computers in human behavior</title><description>Discovering suspicious and illicit behavior in social networks is a significant problem in social network analysis. The patterns of interactions of suspicious users are quite different from their peers and can be identified by using anomaly detection techniques. The existing anomaly detection techniques on social networks focus on networks with only one type of interaction among the users. However, human interactions are inherently multiplex in nature with multiple types of relationships existing among the users, leading to the formation of multilayer social networks. In this paper, we investigate the problem of anomaly detection on multilayer social networks by combining the rich information available in multiple network layers. We propose a pioneer approach namely ADOMS (Anomaly Detection On Multilayer Social networks), an unsupervised, parameter-free, and network feature-based methodology, that automatically detects anomalous users in a multilayer social network and rank them according to their anomalousness. We consider the two well-known anomalous patterns of clique/near-clique and star/near-star anomalies in social networks, and users are ranked according to the degree of similarity of their neighborhoods in different layers to stars or cliques. Experimental results on several real-world multilayer network datasets demonstrate that our approach can effectively detect anomalous nodes in multilayer social networks.
•Anomalies in social networks can signify suspicious and illegal behavior.•Anomaly detection is a significant problem in social network analysis.•Individuals can interact in multiple ways simultaneously forming multilayer networks.•Introducing and studying anomaly detection problem on multilayer social networks.•A network feature-based approach to rank the nodes according to their anomalousness.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Cliques</subject><subject>Graph mining</subject><subject>Multi-graphs</subject><subject>Multiplexing</subject><subject>Network analysis</subject><subject>Online social networks</subject><subject>Outlier detection</subject><subject>Peers</subject><subject>Social interaction</subject><subject>Social network analysis</subject><subject>Social networks</subject><subject>Stars</subject><subject>Studies</subject><subject>User behavior</subject><issn>0747-5632</issn><issn>1873-7692</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNp9kE1PwzAMhiMEEmPwA7hV4txiJ23aCnFAY3xIk7jAOUqTlKV0zUjaof17Mo0zJ8vy-9jWQ8g1QoaA_LbL1LrJKGCZQZ4B4AmZYVWytOQ1PSUzKPMyLTij5-QihA4AigL4jNw_2qDczng7fCZhClurrJtC0pi13FnnEzskm6kfbS_3xifBKSv7ZDDjj_Nf4ZKctbIP5uqvzsnH0_J98ZKu3p5fFw-rVDFajCkvm1oWoHhVcWgPXY1aNpjzouGaUskrxTjmVYOqanVudFsqTXNoWcMqrNmc3Bz3br37nkwYRecmP8STIk4p1lAXLKbwmFLeheBNK7bebqTfCwRxsCQ6ES2JgyUBuYiWInN3ZEx8f2eNF0FZMyijrTdqFNrZf-hfEMVvaw</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Bindu, P.V.</creator><creator>Thilagam, P. Santhi</creator><creator>Ahuja, Deepesh</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U4</scope><scope>8FD</scope><scope>BHHNA</scope><scope>DWI</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>WZK</scope><orcidid>https://orcid.org/0000-0002-3723-9774</orcidid></search><sort><creationdate>201708</creationdate><title>Discovering suspicious behavior in multilayer social networks</title><author>Bindu, P.V. ; Thilagam, P. Santhi ; Ahuja, Deepesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-67b9a50c68860f67b991dab1465b6d22a68c36148b1c8fd4edf7cd240f3b38193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Cliques</topic><topic>Graph mining</topic><topic>Multi-graphs</topic><topic>Multiplexing</topic><topic>Network analysis</topic><topic>Online social networks</topic><topic>Outlier detection</topic><topic>Peers</topic><topic>Social interaction</topic><topic>Social network analysis</topic><topic>Social networks</topic><topic>Stars</topic><topic>Studies</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bindu, P.V.</creatorcontrib><creatorcontrib>Thilagam, P. Santhi</creatorcontrib><creatorcontrib>Ahuja, Deepesh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Technology Research Database</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Computers in human behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bindu, P.V.</au><au>Thilagam, P. Santhi</au><au>Ahuja, Deepesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering suspicious behavior in multilayer social networks</atitle><jtitle>Computers in human behavior</jtitle><date>2017-08</date><risdate>2017</risdate><volume>73</volume><spage>568</spage><epage>582</epage><pages>568-582</pages><issn>0747-5632</issn><eissn>1873-7692</eissn><abstract>Discovering suspicious and illicit behavior in social networks is a significant problem in social network analysis. The patterns of interactions of suspicious users are quite different from their peers and can be identified by using anomaly detection techniques. The existing anomaly detection techniques on social networks focus on networks with only one type of interaction among the users. However, human interactions are inherently multiplex in nature with multiple types of relationships existing among the users, leading to the formation of multilayer social networks. In this paper, we investigate the problem of anomaly detection on multilayer social networks by combining the rich information available in multiple network layers. We propose a pioneer approach namely ADOMS (Anomaly Detection On Multilayer Social networks), an unsupervised, parameter-free, and network feature-based methodology, that automatically detects anomalous users in a multilayer social network and rank them according to their anomalousness. We consider the two well-known anomalous patterns of clique/near-clique and star/near-star anomalies in social networks, and users are ranked according to the degree of similarity of their neighborhoods in different layers to stars or cliques. Experimental results on several real-world multilayer network datasets demonstrate that our approach can effectively detect anomalous nodes in multilayer social networks.
•Anomalies in social networks can signify suspicious and illegal behavior.•Anomaly detection is a significant problem in social network analysis.•Individuals can interact in multiple ways simultaneously forming multilayer networks.•Introducing and studying anomaly detection problem on multilayer social networks.•A network feature-based approach to rank the nodes according to their anomalousness.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.chb.2017.04.001</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3723-9774</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0747-5632 |
ispartof | Computers in human behavior, 2017-08, Vol.73, p.568-582 |
issn | 0747-5632 1873-7692 |
language | eng |
recordid | cdi_proquest_journals_1932190953 |
source | Sociological Abstracts; ScienceDirect Journals (5 years ago - present) |
subjects | Anomalies Anomaly detection Cliques Graph mining Multi-graphs Multiplexing Network analysis Online social networks Outlier detection Peers Social interaction Social network analysis Social networks Stars Studies User behavior |
title | Discovering suspicious behavior in multilayer social networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20suspicious%20behavior%20in%20multilayer%20social%20networks&rft.jtitle=Computers%20in%20human%20behavior&rft.au=Bindu,%20P.V.&rft.date=2017-08&rft.volume=73&rft.spage=568&rft.epage=582&rft.pages=568-582&rft.issn=0747-5632&rft.eissn=1873-7692&rft_id=info:doi/10.1016/j.chb.2017.04.001&rft_dat=%3Cproquest_cross%3E1932190953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932190953&rft_id=info:pmid/&rft_els_id=S0747563217302303&rfr_iscdi=true |