Mixed mill-heating fabrication and thermal energy storage of diatomite/paraffin phase change composite incorporated gypsum-based materials
•Diatomite/paraffin composites is fabricated by the mixed mill-heating method.•The fabricated gypsum-based phase change composites have high thermal stability.•Thermal storage composites is improved with increase of paraffin/diatomite content. The thermal energy storage of gypsum-based material was...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2017-05, Vol.118, p.703-713 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 713 |
---|---|
container_issue | |
container_start_page | 703 |
container_title | Applied thermal engineering |
container_volume | 118 |
creator | Liu, Zhiyong Hu, Dan Lv, Henglin Zhang, Yunsheng Wu, Fan Shen, Dake Fu, Pengchen |
description | •Diatomite/paraffin composites is fabricated by the mixed mill-heating method.•The fabricated gypsum-based phase change composites have high thermal stability.•Thermal storage composites is improved with increase of paraffin/diatomite content.
The thermal energy storage of gypsum-based material was developed by incorporating diatomite/paraffin composite phase change materials. A diatomite/paraffin composite was first fabricated using mix proportions (paraffin:diatomite) of 0.6:0.4, 0.55:0.45, 0.5:0.5, and 0.45:0.55. The diatomite/paraffin composite was then incorporated in a gypsum based composite at 10%, 20%, and 30% of the gypsum weight. The scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR) and X-ray fluorescence spectrometer (XRF) results show that paraffin can be effectively impregnated into diatomite pores and has good compatibility. The differential scanning calorimetry (DSC) results reveal that the diatomite/paraffin composite has phase transition and latent heat temperatures of 70°C. High thermal stability is observed for this fabricated diatomite/paraffin composite according to the thermo-gravimetric analysis (TG) method. The laser particle-sizer, X-ray diffractometer and laser Raman spectrograph results also show that the gypsum-based composite can be effectively stabilized. The strong thermal energy storage performance of the gypsum-based composite is clearly suggested by the results of the specific thermal performance test. |
doi_str_mv | 10.1016/j.applthermaleng.2017.02.057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932190858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431117309468</els_id><sourcerecordid>1932190858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-fa3554d3caa41318316c9f0c348aa52cdb12d2e11810cb55b14697fc065ad9b63</originalsourceid><addsrcrecordid>eNqNUMtu1TAQjRBIlMI_WIJtUk8c5yGxQRUFpFZsYG1N7EmurxLb2L6I-wt8Na5uN-y6mqOZ89CcqvoAvAEO_c2xwRC2fKC440ZubVoOQ8PbhsvhRXUF4yBq2fP-ZcFCTnUnAF5Xb1I6cg7tOHRX1d8H-4cM2-221QfCbN3KFpyj1QV7x9AZ9hTAyFFczyxlH3El5hdmLGa_20w3ASMui3UsHDAR0wd0haL9Hnwqd2ad9jEUYS5p6zmk017PhVmiyypa3NLb6tVSBr17mtfVz7vPP26_1vffv3y7_XRfayHHXC8opOyM0IgdCBgF9HpauBbdiChbbWZoTUsAI3A9SzlD10_Donkv0UxzL66r9xffEP2vE6Wsjv4UXYlUMIkWJj7KsbA-Xlg6-pQiLSpEu2M8K-DqsX11VP-3rx7bV7xVpf0iv7vIqXzy21JUSVtymoyNpLMy3j7P6B_4V5p2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932190858</pqid></control><display><type>article</type><title>Mixed mill-heating fabrication and thermal energy storage of diatomite/paraffin phase change composite incorporated gypsum-based materials</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liu, Zhiyong ; Hu, Dan ; Lv, Henglin ; Zhang, Yunsheng ; Wu, Fan ; Shen, Dake ; Fu, Pengchen</creator><creatorcontrib>Liu, Zhiyong ; Hu, Dan ; Lv, Henglin ; Zhang, Yunsheng ; Wu, Fan ; Shen, Dake ; Fu, Pengchen</creatorcontrib><description>•Diatomite/paraffin composites is fabricated by the mixed mill-heating method.•The fabricated gypsum-based phase change composites have high thermal stability.•Thermal storage composites is improved with increase of paraffin/diatomite content.
The thermal energy storage of gypsum-based material was developed by incorporating diatomite/paraffin composite phase change materials. A diatomite/paraffin composite was first fabricated using mix proportions (paraffin:diatomite) of 0.6:0.4, 0.55:0.45, 0.5:0.5, and 0.45:0.55. The diatomite/paraffin composite was then incorporated in a gypsum based composite at 10%, 20%, and 30% of the gypsum weight. The scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR) and X-ray fluorescence spectrometer (XRF) results show that paraffin can be effectively impregnated into diatomite pores and has good compatibility. The differential scanning calorimetry (DSC) results reveal that the diatomite/paraffin composite has phase transition and latent heat temperatures of 70°C. High thermal stability is observed for this fabricated diatomite/paraffin composite according to the thermo-gravimetric analysis (TG) method. The laser particle-sizer, X-ray diffractometer and laser Raman spectrograph results also show that the gypsum-based composite can be effectively stabilized. The strong thermal energy storage performance of the gypsum-based composite is clearly suggested by the results of the specific thermal performance test.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2017.02.057</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Composite materials ; Diatomaceous earth ; Differential scanning calorimetry ; Energy conservation ; Energy storage ; Fourier transforms ; Gravimetric analysis ; Gypsum ; Gypsum-based composite ; Heat measurement ; Infrared spectroscopy ; Latent heat ; Phase change material ; Phase change materials ; Scanning electron microscopy ; Spectrometry ; Thermal energy ; Thermal energy storage ; Thermal stability ; X-ray fluorescence</subject><ispartof>Applied thermal engineering, 2017-05, Vol.118, p.703-713</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 25, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-fa3554d3caa41318316c9f0c348aa52cdb12d2e11810cb55b14697fc065ad9b63</citedby><cites>FETCH-LOGICAL-c358t-fa3554d3caa41318316c9f0c348aa52cdb12d2e11810cb55b14697fc065ad9b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2017.02.057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Hu, Dan</creatorcontrib><creatorcontrib>Lv, Henglin</creatorcontrib><creatorcontrib>Zhang, Yunsheng</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Shen, Dake</creatorcontrib><creatorcontrib>Fu, Pengchen</creatorcontrib><title>Mixed mill-heating fabrication and thermal energy storage of diatomite/paraffin phase change composite incorporated gypsum-based materials</title><title>Applied thermal engineering</title><description>•Diatomite/paraffin composites is fabricated by the mixed mill-heating method.•The fabricated gypsum-based phase change composites have high thermal stability.•Thermal storage composites is improved with increase of paraffin/diatomite content.
The thermal energy storage of gypsum-based material was developed by incorporating diatomite/paraffin composite phase change materials. A diatomite/paraffin composite was first fabricated using mix proportions (paraffin:diatomite) of 0.6:0.4, 0.55:0.45, 0.5:0.5, and 0.45:0.55. The diatomite/paraffin composite was then incorporated in a gypsum based composite at 10%, 20%, and 30% of the gypsum weight. The scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR) and X-ray fluorescence spectrometer (XRF) results show that paraffin can be effectively impregnated into diatomite pores and has good compatibility. The differential scanning calorimetry (DSC) results reveal that the diatomite/paraffin composite has phase transition and latent heat temperatures of 70°C. High thermal stability is observed for this fabricated diatomite/paraffin composite according to the thermo-gravimetric analysis (TG) method. The laser particle-sizer, X-ray diffractometer and laser Raman spectrograph results also show that the gypsum-based composite can be effectively stabilized. The strong thermal energy storage performance of the gypsum-based composite is clearly suggested by the results of the specific thermal performance test.</description><subject>Composite materials</subject><subject>Diatomaceous earth</subject><subject>Differential scanning calorimetry</subject><subject>Energy conservation</subject><subject>Energy storage</subject><subject>Fourier transforms</subject><subject>Gravimetric analysis</subject><subject>Gypsum</subject><subject>Gypsum-based composite</subject><subject>Heat measurement</subject><subject>Infrared spectroscopy</subject><subject>Latent heat</subject><subject>Phase change material</subject><subject>Phase change materials</subject><subject>Scanning electron microscopy</subject><subject>Spectrometry</subject><subject>Thermal energy</subject><subject>Thermal energy storage</subject><subject>Thermal stability</subject><subject>X-ray fluorescence</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNUMtu1TAQjRBIlMI_WIJtUk8c5yGxQRUFpFZsYG1N7EmurxLb2L6I-wt8Na5uN-y6mqOZ89CcqvoAvAEO_c2xwRC2fKC440ZubVoOQ8PbhsvhRXUF4yBq2fP-ZcFCTnUnAF5Xb1I6cg7tOHRX1d8H-4cM2-221QfCbN3KFpyj1QV7x9AZ9hTAyFFczyxlH3El5hdmLGa_20w3ASMui3UsHDAR0wd0haL9Hnwqd2ad9jEUYS5p6zmk017PhVmiyypa3NLb6tVSBr17mtfVz7vPP26_1vffv3y7_XRfayHHXC8opOyM0IgdCBgF9HpauBbdiChbbWZoTUsAI3A9SzlD10_Donkv0UxzL66r9xffEP2vE6Wsjv4UXYlUMIkWJj7KsbA-Xlg6-pQiLSpEu2M8K-DqsX11VP-3rx7bV7xVpf0iv7vIqXzy21JUSVtymoyNpLMy3j7P6B_4V5p2</recordid><startdate>20170525</startdate><enddate>20170525</enddate><creator>Liu, Zhiyong</creator><creator>Hu, Dan</creator><creator>Lv, Henglin</creator><creator>Zhang, Yunsheng</creator><creator>Wu, Fan</creator><creator>Shen, Dake</creator><creator>Fu, Pengchen</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20170525</creationdate><title>Mixed mill-heating fabrication and thermal energy storage of diatomite/paraffin phase change composite incorporated gypsum-based materials</title><author>Liu, Zhiyong ; Hu, Dan ; Lv, Henglin ; Zhang, Yunsheng ; Wu, Fan ; Shen, Dake ; Fu, Pengchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-fa3554d3caa41318316c9f0c348aa52cdb12d2e11810cb55b14697fc065ad9b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Composite materials</topic><topic>Diatomaceous earth</topic><topic>Differential scanning calorimetry</topic><topic>Energy conservation</topic><topic>Energy storage</topic><topic>Fourier transforms</topic><topic>Gravimetric analysis</topic><topic>Gypsum</topic><topic>Gypsum-based composite</topic><topic>Heat measurement</topic><topic>Infrared spectroscopy</topic><topic>Latent heat</topic><topic>Phase change material</topic><topic>Phase change materials</topic><topic>Scanning electron microscopy</topic><topic>Spectrometry</topic><topic>Thermal energy</topic><topic>Thermal energy storage</topic><topic>Thermal stability</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Hu, Dan</creatorcontrib><creatorcontrib>Lv, Henglin</creatorcontrib><creatorcontrib>Zhang, Yunsheng</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Shen, Dake</creatorcontrib><creatorcontrib>Fu, Pengchen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhiyong</au><au>Hu, Dan</au><au>Lv, Henglin</au><au>Zhang, Yunsheng</au><au>Wu, Fan</au><au>Shen, Dake</au><au>Fu, Pengchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed mill-heating fabrication and thermal energy storage of diatomite/paraffin phase change composite incorporated gypsum-based materials</atitle><jtitle>Applied thermal engineering</jtitle><date>2017-05-25</date><risdate>2017</risdate><volume>118</volume><spage>703</spage><epage>713</epage><pages>703-713</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Diatomite/paraffin composites is fabricated by the mixed mill-heating method.•The fabricated gypsum-based phase change composites have high thermal stability.•Thermal storage composites is improved with increase of paraffin/diatomite content.
The thermal energy storage of gypsum-based material was developed by incorporating diatomite/paraffin composite phase change materials. A diatomite/paraffin composite was first fabricated using mix proportions (paraffin:diatomite) of 0.6:0.4, 0.55:0.45, 0.5:0.5, and 0.45:0.55. The diatomite/paraffin composite was then incorporated in a gypsum based composite at 10%, 20%, and 30% of the gypsum weight. The scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR) and X-ray fluorescence spectrometer (XRF) results show that paraffin can be effectively impregnated into diatomite pores and has good compatibility. The differential scanning calorimetry (DSC) results reveal that the diatomite/paraffin composite has phase transition and latent heat temperatures of 70°C. High thermal stability is observed for this fabricated diatomite/paraffin composite according to the thermo-gravimetric analysis (TG) method. The laser particle-sizer, X-ray diffractometer and laser Raman spectrograph results also show that the gypsum-based composite can be effectively stabilized. The strong thermal energy storage performance of the gypsum-based composite is clearly suggested by the results of the specific thermal performance test.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2017.02.057</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2017-05, Vol.118, p.703-713 |
issn | 1359-4311 1873-5606 |
language | eng |
recordid | cdi_proquest_journals_1932190858 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Composite materials Diatomaceous earth Differential scanning calorimetry Energy conservation Energy storage Fourier transforms Gravimetric analysis Gypsum Gypsum-based composite Heat measurement Infrared spectroscopy Latent heat Phase change material Phase change materials Scanning electron microscopy Spectrometry Thermal energy Thermal energy storage Thermal stability X-ray fluorescence |
title | Mixed mill-heating fabrication and thermal energy storage of diatomite/paraffin phase change composite incorporated gypsum-based materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20mill-heating%20fabrication%20and%20thermal%20energy%20storage%20of%20diatomite/paraffin%20phase%20change%20composite%20incorporated%20gypsum-based%20materials&rft.jtitle=Applied%20thermal%20engineering&rft.au=Liu,%20Zhiyong&rft.date=2017-05-25&rft.volume=118&rft.spage=703&rft.epage=713&rft.pages=703-713&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2017.02.057&rft_dat=%3Cproquest_cross%3E1932190858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932190858&rft_id=info:pmid/&rft_els_id=S1359431117309468&rfr_iscdi=true |