Max point-tolerance graphs

A graph G is a max point-tolerance (MPT) graph if each vertex v of G can be mapped to a pointed-interval(Iv,pv) where Iv is an interval of R and pv∈Iv such that uv is an edge of G iff Iu∩Iv⊇{pu,pv}. MPT graphs model relationships among DNA fragments in genome-wide association studies as well as basi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2017-01, Vol.216, p.84-97
Hauptverfasser: Catanzaro, Daniele, Chaplick, Steven, Felsner, Stefan, Halldórsson, Bjarni V., Halldórsson, Magnús M., Hixon, Thomas, Stacho, Juraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue
container_start_page 84
container_title Discrete Applied Mathematics
container_volume 216
creator Catanzaro, Daniele
Chaplick, Steven
Felsner, Stefan
Halldórsson, Bjarni V.
Halldórsson, Magnús M.
Hixon, Thomas
Stacho, Juraj
description A graph G is a max point-tolerance (MPT) graph if each vertex v of G can be mapped to a pointed-interval(Iv,pv) where Iv is an interval of R and pv∈Iv such that uv is an edge of G iff Iu∩Iv⊇{pu,pv}. MPT graphs model relationships among DNA fragments in genome-wide association studies as well as basic transmission problems in telecommunications. We formally introduce this graph class, characterize it, study combinatorial optimization problems on it, and relate it to several well known graph classes. We characterize MPT graphs as a special case of several 2D geometric intersection graphs; namely, triangle, rectangle, L-shape, and line segment intersection graphs. We further characterize MPT as having certain linear orders on their vertex set. Our last characterization is that MPT graphs are precisely obtained by intersecting special pairs of interval graphs. We also show that, on MPT graphs, the maximum weight independent set problem can be solved in polynomial time, the coloring problem is NP-complete, and the clique cover problem has a 2-approximation. Finally, we demonstrate several connections to known graph classes; e.g., MPT graphs strictly contain interval graphs and outerplanar graphs, but are incomparable to permutation, chordal, and planar graphs.
doi_str_mv 10.1016/j.dam.2015.08.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932185226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X15004266</els_id><sourcerecordid>1932185226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-59ea22b86bfb3be4dc5bbeeadcbf193c12048bd31a3b5e9476b6a113b2dcb3d23</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoWEcfQFcDrltzkjZNcSWDNxhxo-Au5HKqLTNNTTqib2-GunZ1OPB95_ITcg60AAriqi-c3haMQlVQWVBoDkgGsma5qGs4JFliRM5Avh2Tkxh7SimkLiMXT_p7OfpumPLJbzDoweLyPejxI56So1ZvIp791QV5vbt9WT3k6-f7x9XNOrdcyCmvGtSMGSlMa7jB0tnKGETtrGmh4RYYLaVxHDQ3FTZlLYzQANywRHDH-IJcznPH4D93GCfV-10Y0kqV_HRlxZhIFMyUDT7GgK0aQ7fV4UcBVfsIVK9SBGofgaJSpQiScz07mM7_6jCoaDtMH7ouoJ2U890_9i85dmMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932185226</pqid></control><display><type>article</type><title>Max point-tolerance graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Catanzaro, Daniele ; Chaplick, Steven ; Felsner, Stefan ; Halldórsson, Bjarni V. ; Halldórsson, Magnús M. ; Hixon, Thomas ; Stacho, Juraj</creator><creatorcontrib>Catanzaro, Daniele ; Chaplick, Steven ; Felsner, Stefan ; Halldórsson, Bjarni V. ; Halldórsson, Magnús M. ; Hixon, Thomas ; Stacho, Juraj</creatorcontrib><description>A graph G is a max point-tolerance (MPT) graph if each vertex v of G can be mapped to a pointed-interval(Iv,pv) where Iv is an interval of R and pv∈Iv such that uv is an edge of G iff Iu∩Iv⊇{pu,pv}. MPT graphs model relationships among DNA fragments in genome-wide association studies as well as basic transmission problems in telecommunications. We formally introduce this graph class, characterize it, study combinatorial optimization problems on it, and relate it to several well known graph classes. We characterize MPT graphs as a special case of several 2D geometric intersection graphs; namely, triangle, rectangle, L-shape, and line segment intersection graphs. We further characterize MPT as having certain linear orders on their vertex set. Our last characterization is that MPT graphs are precisely obtained by intersecting special pairs of interval graphs. We also show that, on MPT graphs, the maximum weight independent set problem can be solved in polynomial time, the coloring problem is NP-complete, and the clique cover problem has a 2-approximation. Finally, we demonstrate several connections to known graph classes; e.g., MPT graphs strictly contain interval graphs and outerplanar graphs, but are incomparable to permutation, chordal, and planar graphs.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2015.08.019</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Clique cover ; Coloring ; Combinatorial analysis ; Deoxyribonucleic acid ; DNA ; Fragments ; Graphs ; Interval graphs ; L-graphs ; Optimization algorithms ; Outerplanar graphs ; Rectangle intersection graphs ; Studies ; Telecommunications ; Tolerance ; Tolerance graphs ; Weighted independent set</subject><ispartof>Discrete Applied Mathematics, 2017-01, Vol.216, p.84-97</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 10, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-59ea22b86bfb3be4dc5bbeeadcbf193c12048bd31a3b5e9476b6a113b2dcb3d23</citedby><cites>FETCH-LOGICAL-c368t-59ea22b86bfb3be4dc5bbeeadcbf193c12048bd31a3b5e9476b6a113b2dcb3d23</cites><orcidid>0000-0003-3501-4608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X15004266$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Catanzaro, Daniele</creatorcontrib><creatorcontrib>Chaplick, Steven</creatorcontrib><creatorcontrib>Felsner, Stefan</creatorcontrib><creatorcontrib>Halldórsson, Bjarni V.</creatorcontrib><creatorcontrib>Halldórsson, Magnús M.</creatorcontrib><creatorcontrib>Hixon, Thomas</creatorcontrib><creatorcontrib>Stacho, Juraj</creatorcontrib><title>Max point-tolerance graphs</title><title>Discrete Applied Mathematics</title><description>A graph G is a max point-tolerance (MPT) graph if each vertex v of G can be mapped to a pointed-interval(Iv,pv) where Iv is an interval of R and pv∈Iv such that uv is an edge of G iff Iu∩Iv⊇{pu,pv}. MPT graphs model relationships among DNA fragments in genome-wide association studies as well as basic transmission problems in telecommunications. We formally introduce this graph class, characterize it, study combinatorial optimization problems on it, and relate it to several well known graph classes. We characterize MPT graphs as a special case of several 2D geometric intersection graphs; namely, triangle, rectangle, L-shape, and line segment intersection graphs. We further characterize MPT as having certain linear orders on their vertex set. Our last characterization is that MPT graphs are precisely obtained by intersecting special pairs of interval graphs. We also show that, on MPT graphs, the maximum weight independent set problem can be solved in polynomial time, the coloring problem is NP-complete, and the clique cover problem has a 2-approximation. Finally, we demonstrate several connections to known graph classes; e.g., MPT graphs strictly contain interval graphs and outerplanar graphs, but are incomparable to permutation, chordal, and planar graphs.</description><subject>Clique cover</subject><subject>Coloring</subject><subject>Combinatorial analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fragments</subject><subject>Graphs</subject><subject>Interval graphs</subject><subject>L-graphs</subject><subject>Optimization algorithms</subject><subject>Outerplanar graphs</subject><subject>Rectangle intersection graphs</subject><subject>Studies</subject><subject>Telecommunications</subject><subject>Tolerance</subject><subject>Tolerance graphs</subject><subject>Weighted independent set</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoWEcfQFcDrltzkjZNcSWDNxhxo-Au5HKqLTNNTTqib2-GunZ1OPB95_ITcg60AAriqi-c3haMQlVQWVBoDkgGsma5qGs4JFliRM5Avh2Tkxh7SimkLiMXT_p7OfpumPLJbzDoweLyPejxI56So1ZvIp791QV5vbt9WT3k6-f7x9XNOrdcyCmvGtSMGSlMa7jB0tnKGETtrGmh4RYYLaVxHDQ3FTZlLYzQANywRHDH-IJcznPH4D93GCfV-10Y0kqV_HRlxZhIFMyUDT7GgK0aQ7fV4UcBVfsIVK9SBGofgaJSpQiScz07mM7_6jCoaDtMH7ouoJ2U890_9i85dmMU</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Catanzaro, Daniele</creator><creator>Chaplick, Steven</creator><creator>Felsner, Stefan</creator><creator>Halldórsson, Bjarni V.</creator><creator>Halldórsson, Magnús M.</creator><creator>Hixon, Thomas</creator><creator>Stacho, Juraj</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3501-4608</orcidid></search><sort><creationdate>20170110</creationdate><title>Max point-tolerance graphs</title><author>Catanzaro, Daniele ; Chaplick, Steven ; Felsner, Stefan ; Halldórsson, Bjarni V. ; Halldórsson, Magnús M. ; Hixon, Thomas ; Stacho, Juraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-59ea22b86bfb3be4dc5bbeeadcbf193c12048bd31a3b5e9476b6a113b2dcb3d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Clique cover</topic><topic>Coloring</topic><topic>Combinatorial analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fragments</topic><topic>Graphs</topic><topic>Interval graphs</topic><topic>L-graphs</topic><topic>Optimization algorithms</topic><topic>Outerplanar graphs</topic><topic>Rectangle intersection graphs</topic><topic>Studies</topic><topic>Telecommunications</topic><topic>Tolerance</topic><topic>Tolerance graphs</topic><topic>Weighted independent set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Catanzaro, Daniele</creatorcontrib><creatorcontrib>Chaplick, Steven</creatorcontrib><creatorcontrib>Felsner, Stefan</creatorcontrib><creatorcontrib>Halldórsson, Bjarni V.</creatorcontrib><creatorcontrib>Halldórsson, Magnús M.</creatorcontrib><creatorcontrib>Hixon, Thomas</creatorcontrib><creatorcontrib>Stacho, Juraj</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Catanzaro, Daniele</au><au>Chaplick, Steven</au><au>Felsner, Stefan</au><au>Halldórsson, Bjarni V.</au><au>Halldórsson, Magnús M.</au><au>Hixon, Thomas</au><au>Stacho, Juraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Max point-tolerance graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2017-01-10</date><risdate>2017</risdate><volume>216</volume><spage>84</spage><epage>97</epage><pages>84-97</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A graph G is a max point-tolerance (MPT) graph if each vertex v of G can be mapped to a pointed-interval(Iv,pv) where Iv is an interval of R and pv∈Iv such that uv is an edge of G iff Iu∩Iv⊇{pu,pv}. MPT graphs model relationships among DNA fragments in genome-wide association studies as well as basic transmission problems in telecommunications. We formally introduce this graph class, characterize it, study combinatorial optimization problems on it, and relate it to several well known graph classes. We characterize MPT graphs as a special case of several 2D geometric intersection graphs; namely, triangle, rectangle, L-shape, and line segment intersection graphs. We further characterize MPT as having certain linear orders on their vertex set. Our last characterization is that MPT graphs are precisely obtained by intersecting special pairs of interval graphs. We also show that, on MPT graphs, the maximum weight independent set problem can be solved in polynomial time, the coloring problem is NP-complete, and the clique cover problem has a 2-approximation. Finally, we demonstrate several connections to known graph classes; e.g., MPT graphs strictly contain interval graphs and outerplanar graphs, but are incomparable to permutation, chordal, and planar graphs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2015.08.019</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3501-4608</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2017-01, Vol.216, p.84-97
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_1932185226
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Clique cover
Coloring
Combinatorial analysis
Deoxyribonucleic acid
DNA
Fragments
Graphs
Interval graphs
L-graphs
Optimization algorithms
Outerplanar graphs
Rectangle intersection graphs
Studies
Telecommunications
Tolerance
Tolerance graphs
Weighted independent set
title Max point-tolerance graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Max%20point-tolerance%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Catanzaro,%20Daniele&rft.date=2017-01-10&rft.volume=216&rft.spage=84&rft.epage=97&rft.pages=84-97&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2015.08.019&rft_dat=%3Cproquest_cross%3E1932185226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932185226&rft_id=info:pmid/&rft_els_id=S0166218X15004266&rfr_iscdi=true