Max point-tolerance graphs
A graph G is a max point-tolerance (MPT) graph if each vertex v of G can be mapped to a pointed-interval(Iv,pv) where Iv is an interval of R and pv∈Iv such that uv is an edge of G iff Iu∩Iv⊇{pu,pv}. MPT graphs model relationships among DNA fragments in genome-wide association studies as well as basi...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2017-01, Vol.216, p.84-97 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97 |
---|---|
container_issue | |
container_start_page | 84 |
container_title | Discrete Applied Mathematics |
container_volume | 216 |
creator | Catanzaro, Daniele Chaplick, Steven Felsner, Stefan Halldórsson, Bjarni V. Halldórsson, Magnús M. Hixon, Thomas Stacho, Juraj |
description | A graph G is a max point-tolerance (MPT) graph if each vertex v of G can be mapped to a pointed-interval(Iv,pv) where Iv is an interval of R and pv∈Iv such that uv is an edge of G iff Iu∩Iv⊇{pu,pv}. MPT graphs model relationships among DNA fragments in genome-wide association studies as well as basic transmission problems in telecommunications. We formally introduce this graph class, characterize it, study combinatorial optimization problems on it, and relate it to several well known graph classes. We characterize MPT graphs as a special case of several 2D geometric intersection graphs; namely, triangle, rectangle, L-shape, and line segment intersection graphs. We further characterize MPT as having certain linear orders on their vertex set. Our last characterization is that MPT graphs are precisely obtained by intersecting special pairs of interval graphs. We also show that, on MPT graphs, the maximum weight independent set problem can be solved in polynomial time, the coloring problem is NP-complete, and the clique cover problem has a 2-approximation. Finally, we demonstrate several connections to known graph classes; e.g., MPT graphs strictly contain interval graphs and outerplanar graphs, but are incomparable to permutation, chordal, and planar graphs. |
doi_str_mv | 10.1016/j.dam.2015.08.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932185226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X15004266</els_id><sourcerecordid>1932185226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-59ea22b86bfb3be4dc5bbeeadcbf193c12048bd31a3b5e9476b6a113b2dcb3d23</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoWEcfQFcDrltzkjZNcSWDNxhxo-Au5HKqLTNNTTqib2-GunZ1OPB95_ITcg60AAriqi-c3haMQlVQWVBoDkgGsma5qGs4JFliRM5Avh2Tkxh7SimkLiMXT_p7OfpumPLJbzDoweLyPejxI56So1ZvIp791QV5vbt9WT3k6-f7x9XNOrdcyCmvGtSMGSlMa7jB0tnKGETtrGmh4RYYLaVxHDQ3FTZlLYzQANywRHDH-IJcznPH4D93GCfV-10Y0kqV_HRlxZhIFMyUDT7GgK0aQ7fV4UcBVfsIVK9SBGofgaJSpQiScz07mM7_6jCoaDtMH7ouoJ2U890_9i85dmMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932185226</pqid></control><display><type>article</type><title>Max point-tolerance graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Catanzaro, Daniele ; Chaplick, Steven ; Felsner, Stefan ; Halldórsson, Bjarni V. ; Halldórsson, Magnús M. ; Hixon, Thomas ; Stacho, Juraj</creator><creatorcontrib>Catanzaro, Daniele ; Chaplick, Steven ; Felsner, Stefan ; Halldórsson, Bjarni V. ; Halldórsson, Magnús M. ; Hixon, Thomas ; Stacho, Juraj</creatorcontrib><description>A graph G is a max point-tolerance (MPT) graph if each vertex v of G can be mapped to a pointed-interval(Iv,pv) where Iv is an interval of R and pv∈Iv such that uv is an edge of G iff Iu∩Iv⊇{pu,pv}. MPT graphs model relationships among DNA fragments in genome-wide association studies as well as basic transmission problems in telecommunications. We formally introduce this graph class, characterize it, study combinatorial optimization problems on it, and relate it to several well known graph classes. We characterize MPT graphs as a special case of several 2D geometric intersection graphs; namely, triangle, rectangle, L-shape, and line segment intersection graphs. We further characterize MPT as having certain linear orders on their vertex set. Our last characterization is that MPT graphs are precisely obtained by intersecting special pairs of interval graphs. We also show that, on MPT graphs, the maximum weight independent set problem can be solved in polynomial time, the coloring problem is NP-complete, and the clique cover problem has a 2-approximation. Finally, we demonstrate several connections to known graph classes; e.g., MPT graphs strictly contain interval graphs and outerplanar graphs, but are incomparable to permutation, chordal, and planar graphs.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2015.08.019</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Clique cover ; Coloring ; Combinatorial analysis ; Deoxyribonucleic acid ; DNA ; Fragments ; Graphs ; Interval graphs ; L-graphs ; Optimization algorithms ; Outerplanar graphs ; Rectangle intersection graphs ; Studies ; Telecommunications ; Tolerance ; Tolerance graphs ; Weighted independent set</subject><ispartof>Discrete Applied Mathematics, 2017-01, Vol.216, p.84-97</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 10, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-59ea22b86bfb3be4dc5bbeeadcbf193c12048bd31a3b5e9476b6a113b2dcb3d23</citedby><cites>FETCH-LOGICAL-c368t-59ea22b86bfb3be4dc5bbeeadcbf193c12048bd31a3b5e9476b6a113b2dcb3d23</cites><orcidid>0000-0003-3501-4608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X15004266$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Catanzaro, Daniele</creatorcontrib><creatorcontrib>Chaplick, Steven</creatorcontrib><creatorcontrib>Felsner, Stefan</creatorcontrib><creatorcontrib>Halldórsson, Bjarni V.</creatorcontrib><creatorcontrib>Halldórsson, Magnús M.</creatorcontrib><creatorcontrib>Hixon, Thomas</creatorcontrib><creatorcontrib>Stacho, Juraj</creatorcontrib><title>Max point-tolerance graphs</title><title>Discrete Applied Mathematics</title><description>A graph G is a max point-tolerance (MPT) graph if each vertex v of G can be mapped to a pointed-interval(Iv,pv) where Iv is an interval of R and pv∈Iv such that uv is an edge of G iff Iu∩Iv⊇{pu,pv}. MPT graphs model relationships among DNA fragments in genome-wide association studies as well as basic transmission problems in telecommunications. We formally introduce this graph class, characterize it, study combinatorial optimization problems on it, and relate it to several well known graph classes. We characterize MPT graphs as a special case of several 2D geometric intersection graphs; namely, triangle, rectangle, L-shape, and line segment intersection graphs. We further characterize MPT as having certain linear orders on their vertex set. Our last characterization is that MPT graphs are precisely obtained by intersecting special pairs of interval graphs. We also show that, on MPT graphs, the maximum weight independent set problem can be solved in polynomial time, the coloring problem is NP-complete, and the clique cover problem has a 2-approximation. Finally, we demonstrate several connections to known graph classes; e.g., MPT graphs strictly contain interval graphs and outerplanar graphs, but are incomparable to permutation, chordal, and planar graphs.</description><subject>Clique cover</subject><subject>Coloring</subject><subject>Combinatorial analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fragments</subject><subject>Graphs</subject><subject>Interval graphs</subject><subject>L-graphs</subject><subject>Optimization algorithms</subject><subject>Outerplanar graphs</subject><subject>Rectangle intersection graphs</subject><subject>Studies</subject><subject>Telecommunications</subject><subject>Tolerance</subject><subject>Tolerance graphs</subject><subject>Weighted independent set</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoWEcfQFcDrltzkjZNcSWDNxhxo-Au5HKqLTNNTTqib2-GunZ1OPB95_ITcg60AAriqi-c3haMQlVQWVBoDkgGsma5qGs4JFliRM5Avh2Tkxh7SimkLiMXT_p7OfpumPLJbzDoweLyPejxI56So1ZvIp791QV5vbt9WT3k6-f7x9XNOrdcyCmvGtSMGSlMa7jB0tnKGETtrGmh4RYYLaVxHDQ3FTZlLYzQANywRHDH-IJcznPH4D93GCfV-10Y0kqV_HRlxZhIFMyUDT7GgK0aQ7fV4UcBVfsIVK9SBGofgaJSpQiScz07mM7_6jCoaDtMH7ouoJ2U890_9i85dmMU</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Catanzaro, Daniele</creator><creator>Chaplick, Steven</creator><creator>Felsner, Stefan</creator><creator>Halldórsson, Bjarni V.</creator><creator>Halldórsson, Magnús M.</creator><creator>Hixon, Thomas</creator><creator>Stacho, Juraj</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3501-4608</orcidid></search><sort><creationdate>20170110</creationdate><title>Max point-tolerance graphs</title><author>Catanzaro, Daniele ; Chaplick, Steven ; Felsner, Stefan ; Halldórsson, Bjarni V. ; Halldórsson, Magnús M. ; Hixon, Thomas ; Stacho, Juraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-59ea22b86bfb3be4dc5bbeeadcbf193c12048bd31a3b5e9476b6a113b2dcb3d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Clique cover</topic><topic>Coloring</topic><topic>Combinatorial analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fragments</topic><topic>Graphs</topic><topic>Interval graphs</topic><topic>L-graphs</topic><topic>Optimization algorithms</topic><topic>Outerplanar graphs</topic><topic>Rectangle intersection graphs</topic><topic>Studies</topic><topic>Telecommunications</topic><topic>Tolerance</topic><topic>Tolerance graphs</topic><topic>Weighted independent set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Catanzaro, Daniele</creatorcontrib><creatorcontrib>Chaplick, Steven</creatorcontrib><creatorcontrib>Felsner, Stefan</creatorcontrib><creatorcontrib>Halldórsson, Bjarni V.</creatorcontrib><creatorcontrib>Halldórsson, Magnús M.</creatorcontrib><creatorcontrib>Hixon, Thomas</creatorcontrib><creatorcontrib>Stacho, Juraj</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Catanzaro, Daniele</au><au>Chaplick, Steven</au><au>Felsner, Stefan</au><au>Halldórsson, Bjarni V.</au><au>Halldórsson, Magnús M.</au><au>Hixon, Thomas</au><au>Stacho, Juraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Max point-tolerance graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2017-01-10</date><risdate>2017</risdate><volume>216</volume><spage>84</spage><epage>97</epage><pages>84-97</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A graph G is a max point-tolerance (MPT) graph if each vertex v of G can be mapped to a pointed-interval(Iv,pv) where Iv is an interval of R and pv∈Iv such that uv is an edge of G iff Iu∩Iv⊇{pu,pv}. MPT graphs model relationships among DNA fragments in genome-wide association studies as well as basic transmission problems in telecommunications. We formally introduce this graph class, characterize it, study combinatorial optimization problems on it, and relate it to several well known graph classes. We characterize MPT graphs as a special case of several 2D geometric intersection graphs; namely, triangle, rectangle, L-shape, and line segment intersection graphs. We further characterize MPT as having certain linear orders on their vertex set. Our last characterization is that MPT graphs are precisely obtained by intersecting special pairs of interval graphs. We also show that, on MPT graphs, the maximum weight independent set problem can be solved in polynomial time, the coloring problem is NP-complete, and the clique cover problem has a 2-approximation. Finally, we demonstrate several connections to known graph classes; e.g., MPT graphs strictly contain interval graphs and outerplanar graphs, but are incomparable to permutation, chordal, and planar graphs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2015.08.019</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3501-4608</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2017-01, Vol.216, p.84-97 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_1932185226 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Clique cover Coloring Combinatorial analysis Deoxyribonucleic acid DNA Fragments Graphs Interval graphs L-graphs Optimization algorithms Outerplanar graphs Rectangle intersection graphs Studies Telecommunications Tolerance Tolerance graphs Weighted independent set |
title | Max point-tolerance graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Max%20point-tolerance%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Catanzaro,%20Daniele&rft.date=2017-01-10&rft.volume=216&rft.spage=84&rft.epage=97&rft.pages=84-97&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2015.08.019&rft_dat=%3Cproquest_cross%3E1932185226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932185226&rft_id=info:pmid/&rft_els_id=S0166218X15004266&rfr_iscdi=true |