Company event popularity for financial markets using Twitter and sentiment analysis

•The work proposes an Event Popularity Algorithm for Financial Trading.•The approach is based on sentiment analysis to the social network Twitter.•Planning and performing a financial community for the extraction of analyzed tweets.•The events are focused on the thirty companies that compose the Dow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2017-04, Vol.71, p.111-124
Hauptverfasser: Daniel, Mariana, Neves, Rui Ferreira, Horta, Nuno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue
container_start_page 111
container_title Expert systems with applications
container_volume 71
creator Daniel, Mariana
Neves, Rui Ferreira
Horta, Nuno
description •The work proposes an Event Popularity Algorithm for Financial Trading.•The approach is based on sentiment analysis to the social network Twitter.•Planning and performing a financial community for the extraction of analyzed tweets.•The events are focused on the thirty companies that compose the Dow Jones index. The growing number of Twitter users makes it a valuable source of information to study what is happening right now. Users often use Twitter to report real-life events. Here we are only interested in following the financial community. This paper focuses on detecting events popularity through sentiment analysis of tweets published by the financial community on the Twitter universe. The detection of events popularity on Twitter makes this a non-trivial task due to noisy content that often are the tweets. This work aims to filter out all the noisy tweets in order to analyze only the tweets that influence the financial market, more specifically the thirty companies that compose the Dow Jones Average. To perform these tasks, in this paper it is proposed a methodology that starts from the financial community of Twitter and then filters the collected tweets, makes the sentiment analysis of the tweets and finally detects the important events in the life of companies.
doi_str_mv 10.1016/j.eswa.2016.11.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932184980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417416306571</els_id><sourcerecordid>1932184980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-dfb0df258ae4d5c79f68dcd2361fb954949c8100d251d45607378740d1a84dd33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssU7wOE7sSGxQxUuqxIKytlw_kEOaBDtp1b_HUVmzmlncM7pzELoFkgOB6r7JbTyonKY9B8gJpWdoAYIXWcXr4hwtSF3yjAFnl-gqxoYQ4ITwBfpY9btBdUds97Yb8dAPU6uCH4_Y9QE736lOe9XinQrfdox4ir77wpuDH0cbsOoMjonzuxlWnWqP0cdrdOFUG-3N31yiz-enzeo1W7-_vK0e15kuqBgz47bEOFoKZZkpNa9dJYw2tKjAbeuS1azWAggxtATDyorwggvOiAElmDFFsUR3p7tD6H8mG0fZ9FNIJaKEuqAgWC1IStFTSoc-xmCdHIJP7xwlEDnLk42c5clZngSQSV6CHk6QTf333gYZtbedtsYHq0dpev8f_gtxvnjm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932184980</pqid></control><display><type>article</type><title>Company event popularity for financial markets using Twitter and sentiment analysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Daniel, Mariana ; Neves, Rui Ferreira ; Horta, Nuno</creator><creatorcontrib>Daniel, Mariana ; Neves, Rui Ferreira ; Horta, Nuno</creatorcontrib><description>•The work proposes an Event Popularity Algorithm for Financial Trading.•The approach is based on sentiment analysis to the social network Twitter.•Planning and performing a financial community for the extraction of analyzed tweets.•The events are focused on the thirty companies that compose the Dow Jones index. The growing number of Twitter users makes it a valuable source of information to study what is happening right now. Users often use Twitter to report real-life events. Here we are only interested in following the financial community. This paper focuses on detecting events popularity through sentiment analysis of tweets published by the financial community on the Twitter universe. The detection of events popularity on Twitter makes this a non-trivial task due to noisy content that often are the tweets. This work aims to filter out all the noisy tweets in order to analyze only the tweets that influence the financial market, more specifically the thirty companies that compose the Dow Jones Average. To perform these tasks, in this paper it is proposed a methodology that starts from the financial community of Twitter and then filters the collected tweets, makes the sentiment analysis of the tweets and finally detects the important events in the life of companies.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2016.11.022</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Communities ; Data mining ; Dow Jones averages ; Event popularity ; Financial community ; Influence ; Popularity ; Sentiment analysis ; Social networks ; Studies ; Twitter ; Universe</subject><ispartof>Expert systems with applications, 2017-04, Vol.71, p.111-124</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-dfb0df258ae4d5c79f68dcd2361fb954949c8100d251d45607378740d1a84dd33</citedby><cites>FETCH-LOGICAL-c328t-dfb0df258ae4d5c79f68dcd2361fb954949c8100d251d45607378740d1a84dd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417416306571$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Daniel, Mariana</creatorcontrib><creatorcontrib>Neves, Rui Ferreira</creatorcontrib><creatorcontrib>Horta, Nuno</creatorcontrib><title>Company event popularity for financial markets using Twitter and sentiment analysis</title><title>Expert systems with applications</title><description>•The work proposes an Event Popularity Algorithm for Financial Trading.•The approach is based on sentiment analysis to the social network Twitter.•Planning and performing a financial community for the extraction of analyzed tweets.•The events are focused on the thirty companies that compose the Dow Jones index. The growing number of Twitter users makes it a valuable source of information to study what is happening right now. Users often use Twitter to report real-life events. Here we are only interested in following the financial community. This paper focuses on detecting events popularity through sentiment analysis of tweets published by the financial community on the Twitter universe. The detection of events popularity on Twitter makes this a non-trivial task due to noisy content that often are the tweets. This work aims to filter out all the noisy tweets in order to analyze only the tweets that influence the financial market, more specifically the thirty companies that compose the Dow Jones Average. To perform these tasks, in this paper it is proposed a methodology that starts from the financial community of Twitter and then filters the collected tweets, makes the sentiment analysis of the tweets and finally detects the important events in the life of companies.</description><subject>Communities</subject><subject>Data mining</subject><subject>Dow Jones averages</subject><subject>Event popularity</subject><subject>Financial community</subject><subject>Influence</subject><subject>Popularity</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Studies</subject><subject>Twitter</subject><subject>Universe</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssU7wOE7sSGxQxUuqxIKytlw_kEOaBDtp1b_HUVmzmlncM7pzELoFkgOB6r7JbTyonKY9B8gJpWdoAYIXWcXr4hwtSF3yjAFnl-gqxoYQ4ITwBfpY9btBdUds97Yb8dAPU6uCH4_Y9QE736lOe9XinQrfdox4ir77wpuDH0cbsOoMjonzuxlWnWqP0cdrdOFUG-3N31yiz-enzeo1W7-_vK0e15kuqBgz47bEOFoKZZkpNa9dJYw2tKjAbeuS1azWAggxtATDyorwggvOiAElmDFFsUR3p7tD6H8mG0fZ9FNIJaKEuqAgWC1IStFTSoc-xmCdHIJP7xwlEDnLk42c5clZngSQSV6CHk6QTf333gYZtbedtsYHq0dpev8f_gtxvnjm</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Daniel, Mariana</creator><creator>Neves, Rui Ferreira</creator><creator>Horta, Nuno</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170401</creationdate><title>Company event popularity for financial markets using Twitter and sentiment analysis</title><author>Daniel, Mariana ; Neves, Rui Ferreira ; Horta, Nuno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-dfb0df258ae4d5c79f68dcd2361fb954949c8100d251d45607378740d1a84dd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Communities</topic><topic>Data mining</topic><topic>Dow Jones averages</topic><topic>Event popularity</topic><topic>Financial community</topic><topic>Influence</topic><topic>Popularity</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Studies</topic><topic>Twitter</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daniel, Mariana</creatorcontrib><creatorcontrib>Neves, Rui Ferreira</creatorcontrib><creatorcontrib>Horta, Nuno</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daniel, Mariana</au><au>Neves, Rui Ferreira</au><au>Horta, Nuno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Company event popularity for financial markets using Twitter and sentiment analysis</atitle><jtitle>Expert systems with applications</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>71</volume><spage>111</spage><epage>124</epage><pages>111-124</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•The work proposes an Event Popularity Algorithm for Financial Trading.•The approach is based on sentiment analysis to the social network Twitter.•Planning and performing a financial community for the extraction of analyzed tweets.•The events are focused on the thirty companies that compose the Dow Jones index. The growing number of Twitter users makes it a valuable source of information to study what is happening right now. Users often use Twitter to report real-life events. Here we are only interested in following the financial community. This paper focuses on detecting events popularity through sentiment analysis of tweets published by the financial community on the Twitter universe. The detection of events popularity on Twitter makes this a non-trivial task due to noisy content that often are the tweets. This work aims to filter out all the noisy tweets in order to analyze only the tweets that influence the financial market, more specifically the thirty companies that compose the Dow Jones Average. To perform these tasks, in this paper it is proposed a methodology that starts from the financial community of Twitter and then filters the collected tweets, makes the sentiment analysis of the tweets and finally detects the important events in the life of companies.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2016.11.022</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2017-04, Vol.71, p.111-124
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_1932184980
source Elsevier ScienceDirect Journals Complete
subjects Communities
Data mining
Dow Jones averages
Event popularity
Financial community
Influence
Popularity
Sentiment analysis
Social networks
Studies
Twitter
Universe
title Company event popularity for financial markets using Twitter and sentiment analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Company%20event%20popularity%20for%20financial%20markets%20using%20Twitter%20and%20sentiment%20analysis&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Daniel,%20Mariana&rft.date=2017-04-01&rft.volume=71&rft.spage=111&rft.epage=124&rft.pages=111-124&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2016.11.022&rft_dat=%3Cproquest_cross%3E1932184980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932184980&rft_id=info:pmid/&rft_els_id=S0957417416306571&rfr_iscdi=true