The intergranular corrosion susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling
•No intergranular corrosion occured for the peak–re–aged and over–re–aged 2024 Al alloy.•Absence of intergranular corrosion in the re–aged samples resulted from no continuous grain boundary S–Al2CuMg phase.•Aggregated pits were observed in the over–re–aged samples.•Aggregated pitting corrosion was r...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2017-01, Vol.114, p.156-168 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 168 |
---|---|
container_issue | |
container_start_page | 156 |
container_title | Corrosion science |
container_volume | 114 |
creator | Wang, Zhixiu Chen, Peng Li, Hai Fang, Bijun Song, Renguo Zheng, Ziqiao |
description | •No intergranular corrosion occured for the peak–re–aged and over–re–aged 2024 Al alloy.•Absence of intergranular corrosion in the re–aged samples resulted from no continuous grain boundary S–Al2CuMg phase.•Aggregated pits were observed in the over–re–aged samples.•Aggregated pitting corrosion was related to the preferential precipitation of S–phase on the dislocation cell walls.
The intergranular corrosion (IGC) susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling was investigated by accelerated corrosion testing, open circuit potential testing, transmission electron microscopy and scanning electron microscopy. The absence of IGC in both the peak–re–aged and over–re–aged samples is related to the dislocation pile–ups which prevent the supersaturated solutes from diffusing into the grain boundaries and precipitating the continuous S–Al2CuMg phase. The aggregated pitting corrosion in the over–re–aged samples arises from the S–phase precipitates on the dislocation cell walls which accelerate the anodic dissolution of the cell interiors. |
doi_str_mv | 10.1016/j.corsci.2016.11.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932181170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X16311817</els_id><sourcerecordid>1932181170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-79a6361c06ec99e792e102ece807f716423693dbffd56cc5cc49937586ca3e3d3</originalsourceid><addsrcrecordid>eNp9kMFKJDEQhoOs4Kz6Bh4Cnrut6vSkO5cFEXdXELwoeAsxXT1myHbGJC3Mbd_BN_RJzDiePVWq-OoL9TN2hlAjoLxY1zbEZF3dlK5GrAHFAVtg36kKWiV_sAUAQqVE_3jEfqa0BoDCwoJt75-JuylTXEUzzd5EXlwxJBcmnuZkaZPdk_Mub3kYeQNNyy89N96HLR_m6KYVj_T-_82saPc2Y1HxFPycd4YcyeTP-TQUsR8KGYP3ZXTCDkfjE51-1WP28Pv6_upvdXv35-bq8rayQrS56pSRQqIFSVYp6lRDCA1Z6qEbO5RtI6QSw9M4Dktp7dLaVinRLXtpjSAxiGN2vvduYniZKWW9DnOcypcalWiwR-ygUO2esuX2FGnUm-j-mbjVCHoXsl7rfch6F7JG1CXksvZrv0blgldHUReCJkuDi2SzHoL7XvABV4aK4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932181170</pqid></control><display><type>article</type><title>The intergranular corrosion susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Zhixiu ; Chen, Peng ; Li, Hai ; Fang, Bijun ; Song, Renguo ; Zheng, Ziqiao</creator><creatorcontrib>Wang, Zhixiu ; Chen, Peng ; Li, Hai ; Fang, Bijun ; Song, Renguo ; Zheng, Ziqiao</creatorcontrib><description>•No intergranular corrosion occured for the peak–re–aged and over–re–aged 2024 Al alloy.•Absence of intergranular corrosion in the re–aged samples resulted from no continuous grain boundary S–Al2CuMg phase.•Aggregated pits were observed in the over–re–aged samples.•Aggregated pitting corrosion was related to the preferential precipitation of S–phase on the dislocation cell walls.
The intergranular corrosion (IGC) susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling was investigated by accelerated corrosion testing, open circuit potential testing, transmission electron microscopy and scanning electron microscopy. The absence of IGC in both the peak–re–aged and over–re–aged samples is related to the dislocation pile–ups which prevent the supersaturated solutes from diffusing into the grain boundaries and precipitating the continuous S–Al2CuMg phase. The aggregated pitting corrosion in the over–re–aged samples arises from the S–phase precipitates on the dislocation cell walls which accelerate the anodic dissolution of the cell interiors.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2016.11.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>A. Aluminum alloys ; Accelerated tests ; Aging ; Alloys ; Aluminum base alloys ; Anodic dissolution ; B. SEM ; B. TEM ; C. Intergranular corrosion ; C. Pitting corrosion ; Cold rolling ; Corrosion ; Corrosion potential ; Corrosion resistance ; Corrosion tests ; Dislocations ; Dissolution ; Grain boundaries ; Intergranular corrosion ; Open circuit voltage ; Pitting (corrosion) ; Precipitates ; Scanning electron microscopy ; Transmission electron microscopy</subject><ispartof>Corrosion science, 2017-01, Vol.114, p.156-168</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-79a6361c06ec99e792e102ece807f716423693dbffd56cc5cc49937586ca3e3d3</citedby><cites>FETCH-LOGICAL-c334t-79a6361c06ec99e792e102ece807f716423693dbffd56cc5cc49937586ca3e3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X16311817$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Zhixiu</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Fang, Bijun</creatorcontrib><creatorcontrib>Song, Renguo</creatorcontrib><creatorcontrib>Zheng, Ziqiao</creatorcontrib><title>The intergranular corrosion susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling</title><title>Corrosion science</title><description>•No intergranular corrosion occured for the peak–re–aged and over–re–aged 2024 Al alloy.•Absence of intergranular corrosion in the re–aged samples resulted from no continuous grain boundary S–Al2CuMg phase.•Aggregated pits were observed in the over–re–aged samples.•Aggregated pitting corrosion was related to the preferential precipitation of S–phase on the dislocation cell walls.
The intergranular corrosion (IGC) susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling was investigated by accelerated corrosion testing, open circuit potential testing, transmission electron microscopy and scanning electron microscopy. The absence of IGC in both the peak–re–aged and over–re–aged samples is related to the dislocation pile–ups which prevent the supersaturated solutes from diffusing into the grain boundaries and precipitating the continuous S–Al2CuMg phase. The aggregated pitting corrosion in the over–re–aged samples arises from the S–phase precipitates on the dislocation cell walls which accelerate the anodic dissolution of the cell interiors.</description><subject>A. Aluminum alloys</subject><subject>Accelerated tests</subject><subject>Aging</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Anodic dissolution</subject><subject>B. SEM</subject><subject>B. TEM</subject><subject>C. Intergranular corrosion</subject><subject>C. Pitting corrosion</subject><subject>Cold rolling</subject><subject>Corrosion</subject><subject>Corrosion potential</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Dislocations</subject><subject>Dissolution</subject><subject>Grain boundaries</subject><subject>Intergranular corrosion</subject><subject>Open circuit voltage</subject><subject>Pitting (corrosion)</subject><subject>Precipitates</subject><subject>Scanning electron microscopy</subject><subject>Transmission electron microscopy</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKJDEQhoOs4Kz6Bh4Cnrut6vSkO5cFEXdXELwoeAsxXT1myHbGJC3Mbd_BN_RJzDiePVWq-OoL9TN2hlAjoLxY1zbEZF3dlK5GrAHFAVtg36kKWiV_sAUAQqVE_3jEfqa0BoDCwoJt75-JuylTXEUzzd5EXlwxJBcmnuZkaZPdk_Mub3kYeQNNyy89N96HLR_m6KYVj_T-_82saPc2Y1HxFPycd4YcyeTP-TQUsR8KGYP3ZXTCDkfjE51-1WP28Pv6_upvdXv35-bq8rayQrS56pSRQqIFSVYp6lRDCA1Z6qEbO5RtI6QSw9M4Dktp7dLaVinRLXtpjSAxiGN2vvduYniZKWW9DnOcypcalWiwR-ygUO2esuX2FGnUm-j-mbjVCHoXsl7rfch6F7JG1CXksvZrv0blgldHUReCJkuDi2SzHoL7XvABV4aK4w</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Wang, Zhixiu</creator><creator>Chen, Peng</creator><creator>Li, Hai</creator><creator>Fang, Bijun</creator><creator>Song, Renguo</creator><creator>Zheng, Ziqiao</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201701</creationdate><title>The intergranular corrosion susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling</title><author>Wang, Zhixiu ; Chen, Peng ; Li, Hai ; Fang, Bijun ; Song, Renguo ; Zheng, Ziqiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-79a6361c06ec99e792e102ece807f716423693dbffd56cc5cc49937586ca3e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A. Aluminum alloys</topic><topic>Accelerated tests</topic><topic>Aging</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Anodic dissolution</topic><topic>B. SEM</topic><topic>B. TEM</topic><topic>C. Intergranular corrosion</topic><topic>C. Pitting corrosion</topic><topic>Cold rolling</topic><topic>Corrosion</topic><topic>Corrosion potential</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Dislocations</topic><topic>Dissolution</topic><topic>Grain boundaries</topic><topic>Intergranular corrosion</topic><topic>Open circuit voltage</topic><topic>Pitting (corrosion)</topic><topic>Precipitates</topic><topic>Scanning electron microscopy</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhixiu</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Fang, Bijun</creatorcontrib><creatorcontrib>Song, Renguo</creatorcontrib><creatorcontrib>Zheng, Ziqiao</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhixiu</au><au>Chen, Peng</au><au>Li, Hai</au><au>Fang, Bijun</au><au>Song, Renguo</au><au>Zheng, Ziqiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The intergranular corrosion susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling</atitle><jtitle>Corrosion science</jtitle><date>2017-01</date><risdate>2017</risdate><volume>114</volume><spage>156</spage><epage>168</epage><pages>156-168</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•No intergranular corrosion occured for the peak–re–aged and over–re–aged 2024 Al alloy.•Absence of intergranular corrosion in the re–aged samples resulted from no continuous grain boundary S–Al2CuMg phase.•Aggregated pits were observed in the over–re–aged samples.•Aggregated pitting corrosion was related to the preferential precipitation of S–phase on the dislocation cell walls.
The intergranular corrosion (IGC) susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling was investigated by accelerated corrosion testing, open circuit potential testing, transmission electron microscopy and scanning electron microscopy. The absence of IGC in both the peak–re–aged and over–re–aged samples is related to the dislocation pile–ups which prevent the supersaturated solutes from diffusing into the grain boundaries and precipitating the continuous S–Al2CuMg phase. The aggregated pitting corrosion in the over–re–aged samples arises from the S–phase precipitates on the dislocation cell walls which accelerate the anodic dissolution of the cell interiors.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2016.11.013</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2017-01, Vol.114, p.156-168 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_proquest_journals_1932181170 |
source | Elsevier ScienceDirect Journals |
subjects | A. Aluminum alloys Accelerated tests Aging Alloys Aluminum base alloys Anodic dissolution B. SEM B. TEM C. Intergranular corrosion C. Pitting corrosion Cold rolling Corrosion Corrosion potential Corrosion resistance Corrosion tests Dislocations Dissolution Grain boundaries Intergranular corrosion Open circuit voltage Pitting (corrosion) Precipitates Scanning electron microscopy Transmission electron microscopy |
title | The intergranular corrosion susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20intergranular%20corrosion%20susceptibility%20of%202024%20Al%20alloy%20during%20re%E2%80%93ageing%20after%20solution%20treating%20and%20cold%E2%80%93rolling&rft.jtitle=Corrosion%20science&rft.au=Wang,%20Zhixiu&rft.date=2017-01&rft.volume=114&rft.spage=156&rft.epage=168&rft.pages=156-168&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2016.11.013&rft_dat=%3Cproquest_cross%3E1932181170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932181170&rft_id=info:pmid/&rft_els_id=S0010938X16311817&rfr_iscdi=true |