Grid-based volume integration for elasticity: Traction boundary integral equation

•For nonlinear elasticity, the traction boundary integral equation has a volume term.•This volume integral is evaluated using just a regular cell grid covering the domain.•For fracture analysis, the volume integration can simply ignores the fracture surface.•Test calculations have demonstrated the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2017-05, Vol.176, p.74-82
Hauptverfasser: Lumsden, Ian, Gray, L.J., Ye, Wenjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue
container_start_page 74
container_title Engineering fracture mechanics
container_volume 176
creator Lumsden, Ian
Gray, L.J.
Ye, Wenjing
description •For nonlinear elasticity, the traction boundary integral equation has a volume term.•This volume integral is evaluated using just a regular cell grid covering the domain.•For fracture analysis, the volume integration can simply ignores the fracture surface.•Test calculations have demonstrated the correctness of the implementation. A volume integral algorithm for the non-homogeneous 3D elasticity traction boundary integral equation is presented. The body force volume integral is exactly split into a relatively simple boundary integral, together with a remainder volume integral that can be evaluated using a regular grid of cuboid cells covering the problem domain. Of particular importance for (inelastic) fracture analysis is that the volume integral over the regular grid is computed without explicit knowledge of the domain boundary, including the fracture surface. A Galerkin approximation is employed, and the numerical implementation is validated by solving body force elasticity problems with known solutions.
doi_str_mv 10.1016/j.engfracmech.2017.02.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932179791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794416306300</els_id><sourcerecordid>1932179791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-245b248b625dc41e6a9b42a7aec160460692cc8a89ac0ae69bbcd250663fe2873</originalsourceid><addsrcrecordid>eNqNUF1LwzAUDaLgnP6His-tN2maNr7J0CkMRJjPIU1vZ8rWbEk72L83cwo--nQv3PNxzyHklkJGgYr7LsN-1XptNmg-Mwa0zIBlAPKMTGhV5mmZ0-KcTABo3CXnl-QqhA4ASlHBhLzPvW3SWgdskr1bjxtMbD_gyuvBuj5pnU9wrcNgjR0OD8kyOn0fajf2jfaHX_Q6wd34zbkmF61eB7z5mVPy8fy0nL2ki7f56-xxkZqcyyFlvKgZr2rBisZwikLLmjNdajRUABcgJDOm0pXUBjQKWdemYQUIkbfIYrIpuTvpbr3bjRgG1bnR99FSUZkzWspS0oiSJ5TxLgSPrdp6u4mPKwrq2KDq1J8G1bFBBUzFBiN3duJijLG36FUwFnuDjfVoBtU4-w-VL7OFgKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932179791</pqid></control><display><type>article</type><title>Grid-based volume integration for elasticity: Traction boundary integral equation</title><source>Elsevier ScienceDirect Journals</source><creator>Lumsden, Ian ; Gray, L.J. ; Ye, Wenjing</creator><creatorcontrib>Lumsden, Ian ; Gray, L.J. ; Ye, Wenjing</creatorcontrib><description>•For nonlinear elasticity, the traction boundary integral equation has a volume term.•This volume integral is evaluated using just a regular cell grid covering the domain.•For fracture analysis, the volume integration can simply ignores the fracture surface.•Test calculations have demonstrated the correctness of the implementation. A volume integral algorithm for the non-homogeneous 3D elasticity traction boundary integral equation is presented. The body force volume integral is exactly split into a relatively simple boundary integral, together with a remainder volume integral that can be evaluated using a regular grid of cuboid cells covering the problem domain. Of particular importance for (inelastic) fracture analysis is that the volume integral over the regular grid is computed without explicit knowledge of the domain boundary, including the fracture surface. A Galerkin approximation is employed, and the numerical implementation is validated by solving body force elasticity problems with known solutions.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2017.02.009</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Elasticity ; Elasticity body forces ; Fracture mechanics ; Galerkin method ; Integral equations ; Regular grid ; Traction ; Traction boundary integral equation ; Volume integral</subject><ispartof>Engineering fracture mechanics, 2017-05, Vol.176, p.74-82</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-245b248b625dc41e6a9b42a7aec160460692cc8a89ac0ae69bbcd250663fe2873</citedby><cites>FETCH-LOGICAL-c349t-245b248b625dc41e6a9b42a7aec160460692cc8a89ac0ae69bbcd250663fe2873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013794416306300$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lumsden, Ian</creatorcontrib><creatorcontrib>Gray, L.J.</creatorcontrib><creatorcontrib>Ye, Wenjing</creatorcontrib><title>Grid-based volume integration for elasticity: Traction boundary integral equation</title><title>Engineering fracture mechanics</title><description>•For nonlinear elasticity, the traction boundary integral equation has a volume term.•This volume integral is evaluated using just a regular cell grid covering the domain.•For fracture analysis, the volume integration can simply ignores the fracture surface.•Test calculations have demonstrated the correctness of the implementation. A volume integral algorithm for the non-homogeneous 3D elasticity traction boundary integral equation is presented. The body force volume integral is exactly split into a relatively simple boundary integral, together with a remainder volume integral that can be evaluated using a regular grid of cuboid cells covering the problem domain. Of particular importance for (inelastic) fracture analysis is that the volume integral over the regular grid is computed without explicit knowledge of the domain boundary, including the fracture surface. A Galerkin approximation is employed, and the numerical implementation is validated by solving body force elasticity problems with known solutions.</description><subject>Elasticity</subject><subject>Elasticity body forces</subject><subject>Fracture mechanics</subject><subject>Galerkin method</subject><subject>Integral equations</subject><subject>Regular grid</subject><subject>Traction</subject><subject>Traction boundary integral equation</subject><subject>Volume integral</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNUF1LwzAUDaLgnP6His-tN2maNr7J0CkMRJjPIU1vZ8rWbEk72L83cwo--nQv3PNxzyHklkJGgYr7LsN-1XptNmg-Mwa0zIBlAPKMTGhV5mmZ0-KcTABo3CXnl-QqhA4ASlHBhLzPvW3SWgdskr1bjxtMbD_gyuvBuj5pnU9wrcNgjR0OD8kyOn0fajf2jfaHX_Q6wd34zbkmF61eB7z5mVPy8fy0nL2ki7f56-xxkZqcyyFlvKgZr2rBisZwikLLmjNdajRUABcgJDOm0pXUBjQKWdemYQUIkbfIYrIpuTvpbr3bjRgG1bnR99FSUZkzWspS0oiSJ5TxLgSPrdp6u4mPKwrq2KDq1J8G1bFBBUzFBiN3duJijLG36FUwFnuDjfVoBtU4-w-VL7OFgKs</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Lumsden, Ian</creator><creator>Gray, L.J.</creator><creator>Ye, Wenjing</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20170501</creationdate><title>Grid-based volume integration for elasticity: Traction boundary integral equation</title><author>Lumsden, Ian ; Gray, L.J. ; Ye, Wenjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-245b248b625dc41e6a9b42a7aec160460692cc8a89ac0ae69bbcd250663fe2873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Elasticity</topic><topic>Elasticity body forces</topic><topic>Fracture mechanics</topic><topic>Galerkin method</topic><topic>Integral equations</topic><topic>Regular grid</topic><topic>Traction</topic><topic>Traction boundary integral equation</topic><topic>Volume integral</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lumsden, Ian</creatorcontrib><creatorcontrib>Gray, L.J.</creatorcontrib><creatorcontrib>Ye, Wenjing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lumsden, Ian</au><au>Gray, L.J.</au><au>Ye, Wenjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grid-based volume integration for elasticity: Traction boundary integral equation</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>176</volume><spage>74</spage><epage>82</epage><pages>74-82</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•For nonlinear elasticity, the traction boundary integral equation has a volume term.•This volume integral is evaluated using just a regular cell grid covering the domain.•For fracture analysis, the volume integration can simply ignores the fracture surface.•Test calculations have demonstrated the correctness of the implementation. A volume integral algorithm for the non-homogeneous 3D elasticity traction boundary integral equation is presented. The body force volume integral is exactly split into a relatively simple boundary integral, together with a remainder volume integral that can be evaluated using a regular grid of cuboid cells covering the problem domain. Of particular importance for (inelastic) fracture analysis is that the volume integral over the regular grid is computed without explicit knowledge of the domain boundary, including the fracture surface. A Galerkin approximation is employed, and the numerical implementation is validated by solving body force elasticity problems with known solutions.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2017.02.009</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2017-05, Vol.176, p.74-82
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_journals_1932179791
source Elsevier ScienceDirect Journals
subjects Elasticity
Elasticity body forces
Fracture mechanics
Galerkin method
Integral equations
Regular grid
Traction
Traction boundary integral equation
Volume integral
title Grid-based volume integration for elasticity: Traction boundary integral equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grid-based%20volume%20integration%20for%20elasticity:%20Traction%20boundary%20integral%20equation&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Lumsden,%20Ian&rft.date=2017-05-01&rft.volume=176&rft.spage=74&rft.epage=82&rft.pages=74-82&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2017.02.009&rft_dat=%3Cproquest_cross%3E1932179791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932179791&rft_id=info:pmid/&rft_els_id=S0013794416306300&rfr_iscdi=true