Petroleum-containing residue processing via co-catalyzed pyrolysis
[Display omitted] •Model oil slime pyrolysis was conducted in the presence of cobalt chloride.•The analysis of liquid products was performed by GC–MS and FTIR.•The formation of carbon-containing solid residue was studied. This paper is devoted to the study of oil-containing residue (oil-slime) pyrol...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2017-06, Vol.198, p.159-164 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | |
container_start_page | 159 |
container_title | Fuel (Guildford) |
container_volume | 198 |
creator | Chalov, Kirill Lugovoy, Yury Kosivtsov, Yury Stepacheva, Antonina Sulman, Mikhail Molchanov, Vladimir Smirnov, Iliya Panfilov, Viktor Sulman, Esther |
description | [Display omitted]
•Model oil slime pyrolysis was conducted in the presence of cobalt chloride.•The analysis of liquid products was performed by GC–MS and FTIR.•The formation of carbon-containing solid residue was studied.
This paper is devoted to the study of oil-containing residue (oil-slime) pyrolysis process in the presence of cobalt chloride as a catalyst. A mixture consisting of crude oil (20wt.%) and silica (80wt.%) was used as a model substrate. The pyrolysis process carried out at a temperature 500°C in nitrogen atmosphere in the presence of 5wt.% of CoCl2 allowed obtaining an optimal gaseous, liquid and solid product distribution. Moreover the comparison of liquid and solid pyrolysis products composition with those obtained in non-catalytic process was done. It was found that the use of CoCl2 increases the calorific value of both gaseous and liquid products due to the increase in hydrocarbon formation. Pyrolysis solid residue was found to consist of silica particles coated with pyrolysis graphite and can be used as a valuable sorbent. |
doi_str_mv | 10.1016/j.fuel.2016.08.055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932179704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236116307931</els_id><sourcerecordid>1932179704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-617d44b4146dd13c6c5aa2f273b2f84d64fb4771ee61f31a39426d5ede3fe4363</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz635The86OIXLOhBzyGbTCSl265Ju1B_vSnr2dMMM-878_IgdE1wRTCRt03lR2grmvsK1xUW4gQtSK1YqYhgp2iB86akTJJzdJFSgzFWteAL9PAOQ-xbGHel7bvBhC50X0WEFNwIxT72FlKaR4dgCtuX1gymnX7AFfsp-6YU0iU686ZNcPVXl-jz6fFj_VJu3p5f1_eb0goshlIS5TjfcsKlc4RZaYUx1FPFttTX3Enut1wpAiCJZ8SwFafSCXDAPHAm2RLdHO_mVN8jpEE3_Ri7_FKTFaNErRTmWUWPKhv7lCJ4vY9hZ-KkCdYzK93omZWeWWlc68wqm-6OJsj5DwGiTjZAZ8GFCHbQrg__2X8BgqNzCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932179704</pqid></control><display><type>article</type><title>Petroleum-containing residue processing via co-catalyzed pyrolysis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chalov, Kirill ; Lugovoy, Yury ; Kosivtsov, Yury ; Stepacheva, Antonina ; Sulman, Mikhail ; Molchanov, Vladimir ; Smirnov, Iliya ; Panfilov, Viktor ; Sulman, Esther</creator><creatorcontrib>Chalov, Kirill ; Lugovoy, Yury ; Kosivtsov, Yury ; Stepacheva, Antonina ; Sulman, Mikhail ; Molchanov, Vladimir ; Smirnov, Iliya ; Panfilov, Viktor ; Sulman, Esther</creatorcontrib><description>[Display omitted]
•Model oil slime pyrolysis was conducted in the presence of cobalt chloride.•The analysis of liquid products was performed by GC–MS and FTIR.•The formation of carbon-containing solid residue was studied.
This paper is devoted to the study of oil-containing residue (oil-slime) pyrolysis process in the presence of cobalt chloride as a catalyst. A mixture consisting of crude oil (20wt.%) and silica (80wt.%) was used as a model substrate. The pyrolysis process carried out at a temperature 500°C in nitrogen atmosphere in the presence of 5wt.% of CoCl2 allowed obtaining an optimal gaseous, liquid and solid product distribution. Moreover the comparison of liquid and solid pyrolysis products composition with those obtained in non-catalytic process was done. It was found that the use of CoCl2 increases the calorific value of both gaseous and liquid products due to the increase in hydrocarbon formation. Pyrolysis solid residue was found to consist of silica particles coated with pyrolysis graphite and can be used as a valuable sorbent.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2016.08.055</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Calorific value ; Catalysis ; Catalysts ; Catalytic pyrolysis ; Cobalt ; Cobalt chloride ; Crude oil ; Graphite ; Oil-containing residues ; Petroleum ; Pyrolysis ; Pyrolysis liquid ; Pyrolysis products ; Silica ; Silicon dioxide ; Slime ; Temperature effects</subject><ispartof>Fuel (Guildford), 2017-06, Vol.198, p.159-164</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-617d44b4146dd13c6c5aa2f273b2f84d64fb4771ee61f31a39426d5ede3fe4363</citedby><cites>FETCH-LOGICAL-c505t-617d44b4146dd13c6c5aa2f273b2f84d64fb4771ee61f31a39426d5ede3fe4363</cites><orcidid>0000-0001-9366-5201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2016.08.055$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chalov, Kirill</creatorcontrib><creatorcontrib>Lugovoy, Yury</creatorcontrib><creatorcontrib>Kosivtsov, Yury</creatorcontrib><creatorcontrib>Stepacheva, Antonina</creatorcontrib><creatorcontrib>Sulman, Mikhail</creatorcontrib><creatorcontrib>Molchanov, Vladimir</creatorcontrib><creatorcontrib>Smirnov, Iliya</creatorcontrib><creatorcontrib>Panfilov, Viktor</creatorcontrib><creatorcontrib>Sulman, Esther</creatorcontrib><title>Petroleum-containing residue processing via co-catalyzed pyrolysis</title><title>Fuel (Guildford)</title><description>[Display omitted]
•Model oil slime pyrolysis was conducted in the presence of cobalt chloride.•The analysis of liquid products was performed by GC–MS and FTIR.•The formation of carbon-containing solid residue was studied.
This paper is devoted to the study of oil-containing residue (oil-slime) pyrolysis process in the presence of cobalt chloride as a catalyst. A mixture consisting of crude oil (20wt.%) and silica (80wt.%) was used as a model substrate. The pyrolysis process carried out at a temperature 500°C in nitrogen atmosphere in the presence of 5wt.% of CoCl2 allowed obtaining an optimal gaseous, liquid and solid product distribution. Moreover the comparison of liquid and solid pyrolysis products composition with those obtained in non-catalytic process was done. It was found that the use of CoCl2 increases the calorific value of both gaseous and liquid products due to the increase in hydrocarbon formation. Pyrolysis solid residue was found to consist of silica particles coated with pyrolysis graphite and can be used as a valuable sorbent.</description><subject>Calorific value</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic pyrolysis</subject><subject>Cobalt</subject><subject>Cobalt chloride</subject><subject>Crude oil</subject><subject>Graphite</subject><subject>Oil-containing residues</subject><subject>Petroleum</subject><subject>Pyrolysis</subject><subject>Pyrolysis liquid</subject><subject>Pyrolysis products</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Slime</subject><subject>Temperature effects</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz635The86OIXLOhBzyGbTCSl265Ju1B_vSnr2dMMM-878_IgdE1wRTCRt03lR2grmvsK1xUW4gQtSK1YqYhgp2iB86akTJJzdJFSgzFWteAL9PAOQ-xbGHel7bvBhC50X0WEFNwIxT72FlKaR4dgCtuX1gymnX7AFfsp-6YU0iU686ZNcPVXl-jz6fFj_VJu3p5f1_eb0goshlIS5TjfcsKlc4RZaYUx1FPFttTX3Enut1wpAiCJZ8SwFafSCXDAPHAm2RLdHO_mVN8jpEE3_Ri7_FKTFaNErRTmWUWPKhv7lCJ4vY9hZ-KkCdYzK93omZWeWWlc68wqm-6OJsj5DwGiTjZAZ8GFCHbQrg__2X8BgqNzCw</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>Chalov, Kirill</creator><creator>Lugovoy, Yury</creator><creator>Kosivtsov, Yury</creator><creator>Stepacheva, Antonina</creator><creator>Sulman, Mikhail</creator><creator>Molchanov, Vladimir</creator><creator>Smirnov, Iliya</creator><creator>Panfilov, Viktor</creator><creator>Sulman, Esther</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9366-5201</orcidid></search><sort><creationdate>20170615</creationdate><title>Petroleum-containing residue processing via co-catalyzed pyrolysis</title><author>Chalov, Kirill ; Lugovoy, Yury ; Kosivtsov, Yury ; Stepacheva, Antonina ; Sulman, Mikhail ; Molchanov, Vladimir ; Smirnov, Iliya ; Panfilov, Viktor ; Sulman, Esther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-617d44b4146dd13c6c5aa2f273b2f84d64fb4771ee61f31a39426d5ede3fe4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Calorific value</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic pyrolysis</topic><topic>Cobalt</topic><topic>Cobalt chloride</topic><topic>Crude oil</topic><topic>Graphite</topic><topic>Oil-containing residues</topic><topic>Petroleum</topic><topic>Pyrolysis</topic><topic>Pyrolysis liquid</topic><topic>Pyrolysis products</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Slime</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chalov, Kirill</creatorcontrib><creatorcontrib>Lugovoy, Yury</creatorcontrib><creatorcontrib>Kosivtsov, Yury</creatorcontrib><creatorcontrib>Stepacheva, Antonina</creatorcontrib><creatorcontrib>Sulman, Mikhail</creatorcontrib><creatorcontrib>Molchanov, Vladimir</creatorcontrib><creatorcontrib>Smirnov, Iliya</creatorcontrib><creatorcontrib>Panfilov, Viktor</creatorcontrib><creatorcontrib>Sulman, Esther</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chalov, Kirill</au><au>Lugovoy, Yury</au><au>Kosivtsov, Yury</au><au>Stepacheva, Antonina</au><au>Sulman, Mikhail</au><au>Molchanov, Vladimir</au><au>Smirnov, Iliya</au><au>Panfilov, Viktor</au><au>Sulman, Esther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Petroleum-containing residue processing via co-catalyzed pyrolysis</atitle><jtitle>Fuel (Guildford)</jtitle><date>2017-06-15</date><risdate>2017</risdate><volume>198</volume><spage>159</spage><epage>164</epage><pages>159-164</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
•Model oil slime pyrolysis was conducted in the presence of cobalt chloride.•The analysis of liquid products was performed by GC–MS and FTIR.•The formation of carbon-containing solid residue was studied.
This paper is devoted to the study of oil-containing residue (oil-slime) pyrolysis process in the presence of cobalt chloride as a catalyst. A mixture consisting of crude oil (20wt.%) and silica (80wt.%) was used as a model substrate. The pyrolysis process carried out at a temperature 500°C in nitrogen atmosphere in the presence of 5wt.% of CoCl2 allowed obtaining an optimal gaseous, liquid and solid product distribution. Moreover the comparison of liquid and solid pyrolysis products composition with those obtained in non-catalytic process was done. It was found that the use of CoCl2 increases the calorific value of both gaseous and liquid products due to the increase in hydrocarbon formation. Pyrolysis solid residue was found to consist of silica particles coated with pyrolysis graphite and can be used as a valuable sorbent.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2016.08.055</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9366-5201</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2017-06, Vol.198, p.159-164 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_1932179704 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Calorific value Catalysis Catalysts Catalytic pyrolysis Cobalt Cobalt chloride Crude oil Graphite Oil-containing residues Petroleum Pyrolysis Pyrolysis liquid Pyrolysis products Silica Silicon dioxide Slime Temperature effects |
title | Petroleum-containing residue processing via co-catalyzed pyrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Petroleum-containing%20residue%20processing%20via%20co-catalyzed%20pyrolysis&rft.jtitle=Fuel%20(Guildford)&rft.au=Chalov,%20Kirill&rft.date=2017-06-15&rft.volume=198&rft.spage=159&rft.epage=164&rft.pages=159-164&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2016.08.055&rft_dat=%3Cproquest_cross%3E1932179704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932179704&rft_id=info:pmid/&rft_els_id=S0016236116307931&rfr_iscdi=true |