Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules

•NSGA II outperforms SPEA 2 with wider fronts and better relations return-risk.•Technical Analysis shows added value to trading when compared to Buy & Hold.•Bollinger Bands is the strategy of election with strong positive net results. Recent work has been devoted to study the use of multiobjecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2017-08, Vol.79, p.33-43
Hauptverfasser: Macedo, Luís Lobato, Godinho, Pedro, Alves, Maria João
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue
container_start_page 33
container_title Expert systems with applications
container_volume 79
creator Macedo, Luís Lobato
Godinho, Pedro
Alves, Maria João
description •NSGA II outperforms SPEA 2 with wider fronts and better relations return-risk.•Technical Analysis shows added value to trading when compared to Buy & Hold.•Bollinger Bands is the strategy of election with strong positive net results. Recent work has been devoted to study the use of multiobjective evolutionary algorithms (MOEAs) in stock portfolio optimization, within a common mean-variance framework. This article proposes the use of a more appropriate framework, mean-semivariance framework, which takes into account only adverse return variations instead of overall variations. It also proposes the use and comparison of established technical analysis (TA) indicators in pursuing better outcomes within the risk-return relation. Results show there is some difference in the performance of the two selected MOEAs – non-dominated sorting genetic algorithm II (NSGA II) and strength pareto evolutionary algorithm 2 (SPEA 2) – within portfolio optimization. In addition, when used with four TA based strategies – relative strength index (RSI), moving average convergence/divergence (MACD), contrarian bollinger bands (CBB) and bollinger bands (BB), the two selected MOEAs achieve solutions with interesting in-sample and out-of-sample outcomes for the BB strategy.
doi_str_mv 10.1016/j.eswa.2017.02.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932176201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417417301252</els_id><sourcerecordid>1932176201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-1ecdc4fa526187c303f61b93ba123b2b2b8fe80fdd0e7ec0c137e7b548317e043</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThF4tziJF2zSlzQxD9piAucozR1Waq26ZJ20_j0ZBpn5INl-T3r-UfILYOUAcvvmxTDXqccmEyBpyDEGZmxpRRJLgtxTmZQLGSSMZldkqsQGohCADkj23fUfRKwszvtre4N0sH5sXatddQNo-3sjx6t6-nejhvaTW0cygbNaHdIcefa6bjV_kB1--18FHWB6r6iI5pNb41u46TbQ7CB-qnFcE0uat0GvPnrc_L1_PS5ek3WHy9vq8d1YjIOY8LQVCar9YLn8Q8jQNQ5KwtRasZFyWMta1xCXVWAEg0YJiTKcpEtBZMImZiTu9PdwbvthGFUjZt8jBIUKwRnMo-0ooqfVMa7EDzWavC2i-8oBuqIVjXqiFYd0SrgKqKNpoeTCWP-nUWvgrEY2VXWRzKqcvY_-y-r-oX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932176201</pqid></control><display><type>article</type><title>Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Macedo, Luís Lobato ; Godinho, Pedro ; Alves, Maria João</creator><creatorcontrib>Macedo, Luís Lobato ; Godinho, Pedro ; Alves, Maria João</creatorcontrib><description>•NSGA II outperforms SPEA 2 with wider fronts and better relations return-risk.•Technical Analysis shows added value to trading when compared to Buy &amp; Hold.•Bollinger Bands is the strategy of election with strong positive net results. Recent work has been devoted to study the use of multiobjective evolutionary algorithms (MOEAs) in stock portfolio optimization, within a common mean-variance framework. This article proposes the use of a more appropriate framework, mean-semivariance framework, which takes into account only adverse return variations instead of overall variations. It also proposes the use and comparison of established technical analysis (TA) indicators in pursuing better outcomes within the risk-return relation. Results show there is some difference in the performance of the two selected MOEAs – non-dominated sorting genetic algorithm II (NSGA II) and strength pareto evolutionary algorithm 2 (SPEA 2) – within portfolio optimization. In addition, when used with four TA based strategies – relative strength index (RSI), moving average convergence/divergence (MACD), contrarian bollinger bands (CBB) and bollinger bands (BB), the two selected MOEAs achieve solutions with interesting in-sample and out-of-sample outcomes for the BB strategy.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2017.02.033</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Analysis ; Classification ; Divergence ; Evolutionary algorithms ; Genetic algorithms ; Heuristic ; Mean-semivariance ; Multiobjective optimization ; Multiple objective analysis ; Optimization ; Pareto optimization ; Sorting algorithms ; Stock portfolio ; Technical analysis</subject><ispartof>Expert systems with applications, 2017-08, Vol.79, p.33-43</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-1ecdc4fa526187c303f61b93ba123b2b2b8fe80fdd0e7ec0c137e7b548317e043</citedby><cites>FETCH-LOGICAL-c420t-1ecdc4fa526187c303f61b93ba123b2b2b8fe80fdd0e7ec0c137e7b548317e043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417417301252$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Macedo, Luís Lobato</creatorcontrib><creatorcontrib>Godinho, Pedro</creatorcontrib><creatorcontrib>Alves, Maria João</creatorcontrib><title>Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules</title><title>Expert systems with applications</title><description>•NSGA II outperforms SPEA 2 with wider fronts and better relations return-risk.•Technical Analysis shows added value to trading when compared to Buy &amp; Hold.•Bollinger Bands is the strategy of election with strong positive net results. Recent work has been devoted to study the use of multiobjective evolutionary algorithms (MOEAs) in stock portfolio optimization, within a common mean-variance framework. This article proposes the use of a more appropriate framework, mean-semivariance framework, which takes into account only adverse return variations instead of overall variations. It also proposes the use and comparison of established technical analysis (TA) indicators in pursuing better outcomes within the risk-return relation. Results show there is some difference in the performance of the two selected MOEAs – non-dominated sorting genetic algorithm II (NSGA II) and strength pareto evolutionary algorithm 2 (SPEA 2) – within portfolio optimization. In addition, when used with four TA based strategies – relative strength index (RSI), moving average convergence/divergence (MACD), contrarian bollinger bands (CBB) and bollinger bands (BB), the two selected MOEAs achieve solutions with interesting in-sample and out-of-sample outcomes for the BB strategy.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Classification</subject><subject>Divergence</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Mean-semivariance</subject><subject>Multiobjective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Sorting algorithms</subject><subject>Stock portfolio</subject><subject>Technical analysis</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwBThF4tziJF2zSlzQxD9piAucozR1Waq26ZJ20_j0ZBpn5INl-T3r-UfILYOUAcvvmxTDXqccmEyBpyDEGZmxpRRJLgtxTmZQLGSSMZldkqsQGohCADkj23fUfRKwszvtre4N0sH5sXatddQNo-3sjx6t6-nejhvaTW0cygbNaHdIcefa6bjV_kB1--18FHWB6r6iI5pNb41u46TbQ7CB-qnFcE0uat0GvPnrc_L1_PS5ek3WHy9vq8d1YjIOY8LQVCar9YLn8Q8jQNQ5KwtRasZFyWMta1xCXVWAEg0YJiTKcpEtBZMImZiTu9PdwbvthGFUjZt8jBIUKwRnMo-0ooqfVMa7EDzWavC2i-8oBuqIVjXqiFYd0SrgKqKNpoeTCWP-nUWvgrEY2VXWRzKqcvY_-y-r-oX8</recordid><startdate>20170815</startdate><enddate>20170815</enddate><creator>Macedo, Luís Lobato</creator><creator>Godinho, Pedro</creator><creator>Alves, Maria João</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170815</creationdate><title>Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules</title><author>Macedo, Luís Lobato ; Godinho, Pedro ; Alves, Maria João</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-1ecdc4fa526187c303f61b93ba123b2b2b8fe80fdd0e7ec0c137e7b548317e043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Classification</topic><topic>Divergence</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Mean-semivariance</topic><topic>Multiobjective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Sorting algorithms</topic><topic>Stock portfolio</topic><topic>Technical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macedo, Luís Lobato</creatorcontrib><creatorcontrib>Godinho, Pedro</creatorcontrib><creatorcontrib>Alves, Maria João</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macedo, Luís Lobato</au><au>Godinho, Pedro</au><au>Alves, Maria João</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules</atitle><jtitle>Expert systems with applications</jtitle><date>2017-08-15</date><risdate>2017</risdate><volume>79</volume><spage>33</spage><epage>43</epage><pages>33-43</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•NSGA II outperforms SPEA 2 with wider fronts and better relations return-risk.•Technical Analysis shows added value to trading when compared to Buy &amp; Hold.•Bollinger Bands is the strategy of election with strong positive net results. Recent work has been devoted to study the use of multiobjective evolutionary algorithms (MOEAs) in stock portfolio optimization, within a common mean-variance framework. This article proposes the use of a more appropriate framework, mean-semivariance framework, which takes into account only adverse return variations instead of overall variations. It also proposes the use and comparison of established technical analysis (TA) indicators in pursuing better outcomes within the risk-return relation. Results show there is some difference in the performance of the two selected MOEAs – non-dominated sorting genetic algorithm II (NSGA II) and strength pareto evolutionary algorithm 2 (SPEA 2) – within portfolio optimization. In addition, when used with four TA based strategies – relative strength index (RSI), moving average convergence/divergence (MACD), contrarian bollinger bands (CBB) and bollinger bands (BB), the two selected MOEAs achieve solutions with interesting in-sample and out-of-sample outcomes for the BB strategy.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2017.02.033</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2017-08, Vol.79, p.33-43
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_1932176201
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Analysis
Classification
Divergence
Evolutionary algorithms
Genetic algorithms
Heuristic
Mean-semivariance
Multiobjective optimization
Multiple objective analysis
Optimization
Pareto optimization
Sorting algorithms
Stock portfolio
Technical analysis
title Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean-semivariance%20portfolio%20optimization%20with%20multiobjective%20evolutionary%20algorithms%20and%20technical%20analysis%20rules&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Macedo,%20Lu%C3%ADs%20Lobato&rft.date=2017-08-15&rft.volume=79&rft.spage=33&rft.epage=43&rft.pages=33-43&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2017.02.033&rft_dat=%3Cproquest_cross%3E1932176201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932176201&rft_id=info:pmid/&rft_els_id=S0957417417301252&rfr_iscdi=true