Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules
•NSGA II outperforms SPEA 2 with wider fronts and better relations return-risk.•Technical Analysis shows added value to trading when compared to Buy & Hold.•Bollinger Bands is the strategy of election with strong positive net results. Recent work has been devoted to study the use of multiobjecti...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2017-08, Vol.79, p.33-43 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | |
container_start_page | 33 |
container_title | Expert systems with applications |
container_volume | 79 |
creator | Macedo, Luís Lobato Godinho, Pedro Alves, Maria João |
description | •NSGA II outperforms SPEA 2 with wider fronts and better relations return-risk.•Technical Analysis shows added value to trading when compared to Buy & Hold.•Bollinger Bands is the strategy of election with strong positive net results.
Recent work has been devoted to study the use of multiobjective evolutionary algorithms (MOEAs) in stock portfolio optimization, within a common mean-variance framework. This article proposes the use of a more appropriate framework, mean-semivariance framework, which takes into account only adverse return variations instead of overall variations. It also proposes the use and comparison of established technical analysis (TA) indicators in pursuing better outcomes within the risk-return relation. Results show there is some difference in the performance of the two selected MOEAs – non-dominated sorting genetic algorithm II (NSGA II) and strength pareto evolutionary algorithm 2 (SPEA 2) – within portfolio optimization. In addition, when used with four TA based strategies – relative strength index (RSI), moving average convergence/divergence (MACD), contrarian bollinger bands (CBB) and bollinger bands (BB), the two selected MOEAs achieve solutions with interesting in-sample and out-of-sample outcomes for the BB strategy. |
doi_str_mv | 10.1016/j.eswa.2017.02.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932176201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417417301252</els_id><sourcerecordid>1932176201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-1ecdc4fa526187c303f61b93ba123b2b2b8fe80fdd0e7ec0c137e7b548317e043</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThF4tziJF2zSlzQxD9piAucozR1Waq26ZJ20_j0ZBpn5INl-T3r-UfILYOUAcvvmxTDXqccmEyBpyDEGZmxpRRJLgtxTmZQLGSSMZldkqsQGohCADkj23fUfRKwszvtre4N0sH5sXatddQNo-3sjx6t6-nejhvaTW0cygbNaHdIcefa6bjV_kB1--18FHWB6r6iI5pNb41u46TbQ7CB-qnFcE0uat0GvPnrc_L1_PS5ek3WHy9vq8d1YjIOY8LQVCar9YLn8Q8jQNQ5KwtRasZFyWMta1xCXVWAEg0YJiTKcpEtBZMImZiTu9PdwbvthGFUjZt8jBIUKwRnMo-0ooqfVMa7EDzWavC2i-8oBuqIVjXqiFYd0SrgKqKNpoeTCWP-nUWvgrEY2VXWRzKqcvY_-y-r-oX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932176201</pqid></control><display><type>article</type><title>Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Macedo, Luís Lobato ; Godinho, Pedro ; Alves, Maria João</creator><creatorcontrib>Macedo, Luís Lobato ; Godinho, Pedro ; Alves, Maria João</creatorcontrib><description>•NSGA II outperforms SPEA 2 with wider fronts and better relations return-risk.•Technical Analysis shows added value to trading when compared to Buy & Hold.•Bollinger Bands is the strategy of election with strong positive net results.
Recent work has been devoted to study the use of multiobjective evolutionary algorithms (MOEAs) in stock portfolio optimization, within a common mean-variance framework. This article proposes the use of a more appropriate framework, mean-semivariance framework, which takes into account only adverse return variations instead of overall variations. It also proposes the use and comparison of established technical analysis (TA) indicators in pursuing better outcomes within the risk-return relation. Results show there is some difference in the performance of the two selected MOEAs – non-dominated sorting genetic algorithm II (NSGA II) and strength pareto evolutionary algorithm 2 (SPEA 2) – within portfolio optimization. In addition, when used with four TA based strategies – relative strength index (RSI), moving average convergence/divergence (MACD), contrarian bollinger bands (CBB) and bollinger bands (BB), the two selected MOEAs achieve solutions with interesting in-sample and out-of-sample outcomes for the BB strategy.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2017.02.033</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Analysis ; Classification ; Divergence ; Evolutionary algorithms ; Genetic algorithms ; Heuristic ; Mean-semivariance ; Multiobjective optimization ; Multiple objective analysis ; Optimization ; Pareto optimization ; Sorting algorithms ; Stock portfolio ; Technical analysis</subject><ispartof>Expert systems with applications, 2017-08, Vol.79, p.33-43</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-1ecdc4fa526187c303f61b93ba123b2b2b8fe80fdd0e7ec0c137e7b548317e043</citedby><cites>FETCH-LOGICAL-c420t-1ecdc4fa526187c303f61b93ba123b2b2b8fe80fdd0e7ec0c137e7b548317e043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417417301252$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Macedo, Luís Lobato</creatorcontrib><creatorcontrib>Godinho, Pedro</creatorcontrib><creatorcontrib>Alves, Maria João</creatorcontrib><title>Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules</title><title>Expert systems with applications</title><description>•NSGA II outperforms SPEA 2 with wider fronts and better relations return-risk.•Technical Analysis shows added value to trading when compared to Buy & Hold.•Bollinger Bands is the strategy of election with strong positive net results.
Recent work has been devoted to study the use of multiobjective evolutionary algorithms (MOEAs) in stock portfolio optimization, within a common mean-variance framework. This article proposes the use of a more appropriate framework, mean-semivariance framework, which takes into account only adverse return variations instead of overall variations. It also proposes the use and comparison of established technical analysis (TA) indicators in pursuing better outcomes within the risk-return relation. Results show there is some difference in the performance of the two selected MOEAs – non-dominated sorting genetic algorithm II (NSGA II) and strength pareto evolutionary algorithm 2 (SPEA 2) – within portfolio optimization. In addition, when used with four TA based strategies – relative strength index (RSI), moving average convergence/divergence (MACD), contrarian bollinger bands (CBB) and bollinger bands (BB), the two selected MOEAs achieve solutions with interesting in-sample and out-of-sample outcomes for the BB strategy.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Classification</subject><subject>Divergence</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Mean-semivariance</subject><subject>Multiobjective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Sorting algorithms</subject><subject>Stock portfolio</subject><subject>Technical analysis</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwBThF4tziJF2zSlzQxD9piAucozR1Waq26ZJ20_j0ZBpn5INl-T3r-UfILYOUAcvvmxTDXqccmEyBpyDEGZmxpRRJLgtxTmZQLGSSMZldkqsQGohCADkj23fUfRKwszvtre4N0sH5sXatddQNo-3sjx6t6-nejhvaTW0cygbNaHdIcefa6bjV_kB1--18FHWB6r6iI5pNb41u46TbQ7CB-qnFcE0uat0GvPnrc_L1_PS5ek3WHy9vq8d1YjIOY8LQVCar9YLn8Q8jQNQ5KwtRasZFyWMta1xCXVWAEg0YJiTKcpEtBZMImZiTu9PdwbvthGFUjZt8jBIUKwRnMo-0ooqfVMa7EDzWavC2i-8oBuqIVjXqiFYd0SrgKqKNpoeTCWP-nUWvgrEY2VXWRzKqcvY_-y-r-oX8</recordid><startdate>20170815</startdate><enddate>20170815</enddate><creator>Macedo, Luís Lobato</creator><creator>Godinho, Pedro</creator><creator>Alves, Maria João</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170815</creationdate><title>Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules</title><author>Macedo, Luís Lobato ; Godinho, Pedro ; Alves, Maria João</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-1ecdc4fa526187c303f61b93ba123b2b2b8fe80fdd0e7ec0c137e7b548317e043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Classification</topic><topic>Divergence</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Mean-semivariance</topic><topic>Multiobjective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Sorting algorithms</topic><topic>Stock portfolio</topic><topic>Technical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macedo, Luís Lobato</creatorcontrib><creatorcontrib>Godinho, Pedro</creatorcontrib><creatorcontrib>Alves, Maria João</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macedo, Luís Lobato</au><au>Godinho, Pedro</au><au>Alves, Maria João</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules</atitle><jtitle>Expert systems with applications</jtitle><date>2017-08-15</date><risdate>2017</risdate><volume>79</volume><spage>33</spage><epage>43</epage><pages>33-43</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•NSGA II outperforms SPEA 2 with wider fronts and better relations return-risk.•Technical Analysis shows added value to trading when compared to Buy & Hold.•Bollinger Bands is the strategy of election with strong positive net results.
Recent work has been devoted to study the use of multiobjective evolutionary algorithms (MOEAs) in stock portfolio optimization, within a common mean-variance framework. This article proposes the use of a more appropriate framework, mean-semivariance framework, which takes into account only adverse return variations instead of overall variations. It also proposes the use and comparison of established technical analysis (TA) indicators in pursuing better outcomes within the risk-return relation. Results show there is some difference in the performance of the two selected MOEAs – non-dominated sorting genetic algorithm II (NSGA II) and strength pareto evolutionary algorithm 2 (SPEA 2) – within portfolio optimization. In addition, when used with four TA based strategies – relative strength index (RSI), moving average convergence/divergence (MACD), contrarian bollinger bands (CBB) and bollinger bands (BB), the two selected MOEAs achieve solutions with interesting in-sample and out-of-sample outcomes for the BB strategy.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2017.02.033</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2017-08, Vol.79, p.33-43 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_journals_1932176201 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Analysis Classification Divergence Evolutionary algorithms Genetic algorithms Heuristic Mean-semivariance Multiobjective optimization Multiple objective analysis Optimization Pareto optimization Sorting algorithms Stock portfolio Technical analysis |
title | Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean-semivariance%20portfolio%20optimization%20with%20multiobjective%20evolutionary%20algorithms%20and%20technical%20analysis%20rules&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Macedo,%20Lu%C3%ADs%20Lobato&rft.date=2017-08-15&rft.volume=79&rft.spage=33&rft.epage=43&rft.pages=33-43&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2017.02.033&rft_dat=%3Cproquest_cross%3E1932176201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932176201&rft_id=info:pmid/&rft_els_id=S0957417417301252&rfr_iscdi=true |