Fixed-parameter algorithms for DAG Partitioning

Finding the origin of short phrases propagating through the web has been formalized by Leskovec et al. (2009) as DAG Partitioning: given an arc-weighted directed acyclic graph on n  vertices and m  arcs, delete arcs with total weight at most  k such that each resulting weakly-connected component con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2017-03, Vol.220, p.134-160
Hauptverfasser: van Bevern, René, Bredereck, Robert, Chopin, Morgan, Hartung, Sepp, Hüffner, Falk, Nichterlein, André, Suchý, Ondřej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue
container_start_page 134
container_title Discrete Applied Mathematics
container_volume 220
creator van Bevern, René
Bredereck, Robert
Chopin, Morgan
Hartung, Sepp
Hüffner, Falk
Nichterlein, André
Suchý, Ondřej
description Finding the origin of short phrases propagating through the web has been formalized by Leskovec et al. (2009) as DAG Partitioning: given an arc-weighted directed acyclic graph on n  vertices and m  arcs, delete arcs with total weight at most  k such that each resulting weakly-connected component contains exactly one sink—a vertex without outgoing arcs. DAG Partitioning is NP-hard. We show an algorithm to solve DAG Partitioning in O(2k⋅(n+m))  time, that is, in linear time for fixed  k. We complement it with linear-time executable data reduction rules. Our experiments show that, in combination, they can optimally solve DAG Partitioning on simulated citation networks within five minutes for k≤190 and m being  107 and larger. We use our obtained optimal solutions to evaluate the solution quality of Leskovec et al.’s heuristic. We show that Leskovec et al.’s heuristic works optimally on trees and generalize this result by showing that DAG Partitioning is solvable in 2O(t2)⋅n time if a width-t tree decomposition of the input graph is given. Thus, we improve an algorithm and answer an open question of Alamdari and Mehrabian (2012). We complement our algorithms by lower bounds on the running time of exact algorithms and on the effectivity of data reduction.
doi_str_mv 10.1016/j.dam.2016.12.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932131045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X16306205</els_id><sourcerecordid>1932131045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8810b0f52feef6e644241922b01b8b9b946072d736e021c0c5174a58daade1ec3</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmPwA7hV4tzOTtu0FadpsIE0CQ4gcYvS1B2p1mYkHWL_nkzjzMm2_J6f9TF2i5AgoJh1SaP6hIc2QZ4A8DM2wbLgsSgKPGeTsBAxx_Ljkl153wEAhmnCZkvzQ028U071NJKL1HZjnRk_ex-11kUP81X0qtxoRmMHM2yu2UWrtp5u_uqUvS8f3xZP8fpl9byYr2OdinKMyxKhhjbnLVErSGQZz7DivAasy7qqq0xAwZsiFQQcNegci0zlZaNUQ0g6nbK7092ds1978qPs7N4NIVJilXJMEbI8qPCk0s5676iVO2d65Q4SQR65yE4GLvLIRSKXgUvw3J88FN7_NuSk14YGTY1xpEfZWPOP-xe76GkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932131045</pqid></control><display><type>article</type><title>Fixed-parameter algorithms for DAG Partitioning</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>van Bevern, René ; Bredereck, Robert ; Chopin, Morgan ; Hartung, Sepp ; Hüffner, Falk ; Nichterlein, André ; Suchý, Ondřej</creator><creatorcontrib>van Bevern, René ; Bredereck, Robert ; Chopin, Morgan ; Hartung, Sepp ; Hüffner, Falk ; Nichterlein, André ; Suchý, Ondřej</creatorcontrib><description>Finding the origin of short phrases propagating through the web has been formalized by Leskovec et al. (2009) as DAG Partitioning: given an arc-weighted directed acyclic graph on n  vertices and m  arcs, delete arcs with total weight at most  k such that each resulting weakly-connected component contains exactly one sink—a vertex without outgoing arcs. DAG Partitioning is NP-hard. We show an algorithm to solve DAG Partitioning in O(2k⋅(n+m))  time, that is, in linear time for fixed  k. We complement it with linear-time executable data reduction rules. Our experiments show that, in combination, they can optimally solve DAG Partitioning on simulated citation networks within five minutes for k≤190 and m being  107 and larger. We use our obtained optimal solutions to evaluate the solution quality of Leskovec et al.’s heuristic. We show that Leskovec et al.’s heuristic works optimally on trees and generalize this result by showing that DAG Partitioning is solvable in 2O(t2)⋅n time if a width-t tree decomposition of the input graph is given. Thus, we improve an algorithm and answer an open question of Alamdari and Mehrabian (2012). We complement our algorithms by lower bounds on the running time of exact algorithms and on the effectivity of data reduction.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2016.12.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithm engineering ; Algorithms ; Complement ; Computer simulation ; Data reduction ; Evaluating heuristics ; Graph algorithms ; Graph theory ; Graphs ; Heuristic ; Linear equations ; Linear-time algorithms ; Lower bounds ; Multiway cut ; NP-hard problem ; Optimization ; Partitioning ; Polynomial-time data reduction ; Run time (computers) ; Studies ; Trees (mathematics)</subject><ispartof>Discrete Applied Mathematics, 2017-03, Vol.220, p.134-160</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 31, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8810b0f52feef6e644241922b01b8b9b946072d736e021c0c5174a58daade1ec3</citedby><cites>FETCH-LOGICAL-c368t-8810b0f52feef6e644241922b01b8b9b946072d736e021c0c5174a58daade1ec3</cites><orcidid>0000-0002-4805-218X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X16306205$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>van Bevern, René</creatorcontrib><creatorcontrib>Bredereck, Robert</creatorcontrib><creatorcontrib>Chopin, Morgan</creatorcontrib><creatorcontrib>Hartung, Sepp</creatorcontrib><creatorcontrib>Hüffner, Falk</creatorcontrib><creatorcontrib>Nichterlein, André</creatorcontrib><creatorcontrib>Suchý, Ondřej</creatorcontrib><title>Fixed-parameter algorithms for DAG Partitioning</title><title>Discrete Applied Mathematics</title><description>Finding the origin of short phrases propagating through the web has been formalized by Leskovec et al. (2009) as DAG Partitioning: given an arc-weighted directed acyclic graph on n  vertices and m  arcs, delete arcs with total weight at most  k such that each resulting weakly-connected component contains exactly one sink—a vertex without outgoing arcs. DAG Partitioning is NP-hard. We show an algorithm to solve DAG Partitioning in O(2k⋅(n+m))  time, that is, in linear time for fixed  k. We complement it with linear-time executable data reduction rules. Our experiments show that, in combination, they can optimally solve DAG Partitioning on simulated citation networks within five minutes for k≤190 and m being  107 and larger. We use our obtained optimal solutions to evaluate the solution quality of Leskovec et al.’s heuristic. We show that Leskovec et al.’s heuristic works optimally on trees and generalize this result by showing that DAG Partitioning is solvable in 2O(t2)⋅n time if a width-t tree decomposition of the input graph is given. Thus, we improve an algorithm and answer an open question of Alamdari and Mehrabian (2012). We complement our algorithms by lower bounds on the running time of exact algorithms and on the effectivity of data reduction.</description><subject>Algorithm engineering</subject><subject>Algorithms</subject><subject>Complement</subject><subject>Computer simulation</subject><subject>Data reduction</subject><subject>Evaluating heuristics</subject><subject>Graph algorithms</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Heuristic</subject><subject>Linear equations</subject><subject>Linear-time algorithms</subject><subject>Lower bounds</subject><subject>Multiway cut</subject><subject>NP-hard problem</subject><subject>Optimization</subject><subject>Partitioning</subject><subject>Polynomial-time data reduction</subject><subject>Run time (computers)</subject><subject>Studies</subject><subject>Trees (mathematics)</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwzAMhSMEEmPwA7hV4tzOTtu0FadpsIE0CQ4gcYvS1B2p1mYkHWL_nkzjzMm2_J6f9TF2i5AgoJh1SaP6hIc2QZ4A8DM2wbLgsSgKPGeTsBAxx_Ljkl153wEAhmnCZkvzQ028U071NJKL1HZjnRk_ex-11kUP81X0qtxoRmMHM2yu2UWrtp5u_uqUvS8f3xZP8fpl9byYr2OdinKMyxKhhjbnLVErSGQZz7DivAasy7qqq0xAwZsiFQQcNegci0zlZaNUQ0g6nbK7092ds1978qPs7N4NIVJilXJMEbI8qPCk0s5676iVO2d65Q4SQR65yE4GLvLIRSKXgUvw3J88FN7_NuSk14YGTY1xpEfZWPOP-xe76GkA</recordid><startdate>20170331</startdate><enddate>20170331</enddate><creator>van Bevern, René</creator><creator>Bredereck, Robert</creator><creator>Chopin, Morgan</creator><creator>Hartung, Sepp</creator><creator>Hüffner, Falk</creator><creator>Nichterlein, André</creator><creator>Suchý, Ondřej</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4805-218X</orcidid></search><sort><creationdate>20170331</creationdate><title>Fixed-parameter algorithms for DAG Partitioning</title><author>van Bevern, René ; Bredereck, Robert ; Chopin, Morgan ; Hartung, Sepp ; Hüffner, Falk ; Nichterlein, André ; Suchý, Ondřej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8810b0f52feef6e644241922b01b8b9b946072d736e021c0c5174a58daade1ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm engineering</topic><topic>Algorithms</topic><topic>Complement</topic><topic>Computer simulation</topic><topic>Data reduction</topic><topic>Evaluating heuristics</topic><topic>Graph algorithms</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Heuristic</topic><topic>Linear equations</topic><topic>Linear-time algorithms</topic><topic>Lower bounds</topic><topic>Multiway cut</topic><topic>NP-hard problem</topic><topic>Optimization</topic><topic>Partitioning</topic><topic>Polynomial-time data reduction</topic><topic>Run time (computers)</topic><topic>Studies</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Bevern, René</creatorcontrib><creatorcontrib>Bredereck, Robert</creatorcontrib><creatorcontrib>Chopin, Morgan</creatorcontrib><creatorcontrib>Hartung, Sepp</creatorcontrib><creatorcontrib>Hüffner, Falk</creatorcontrib><creatorcontrib>Nichterlein, André</creatorcontrib><creatorcontrib>Suchý, Ondřej</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Bevern, René</au><au>Bredereck, Robert</au><au>Chopin, Morgan</au><au>Hartung, Sepp</au><au>Hüffner, Falk</au><au>Nichterlein, André</au><au>Suchý, Ondřej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed-parameter algorithms for DAG Partitioning</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2017-03-31</date><risdate>2017</risdate><volume>220</volume><spage>134</spage><epage>160</epage><pages>134-160</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Finding the origin of short phrases propagating through the web has been formalized by Leskovec et al. (2009) as DAG Partitioning: given an arc-weighted directed acyclic graph on n  vertices and m  arcs, delete arcs with total weight at most  k such that each resulting weakly-connected component contains exactly one sink—a vertex without outgoing arcs. DAG Partitioning is NP-hard. We show an algorithm to solve DAG Partitioning in O(2k⋅(n+m))  time, that is, in linear time for fixed  k. We complement it with linear-time executable data reduction rules. Our experiments show that, in combination, they can optimally solve DAG Partitioning on simulated citation networks within five minutes for k≤190 and m being  107 and larger. We use our obtained optimal solutions to evaluate the solution quality of Leskovec et al.’s heuristic. We show that Leskovec et al.’s heuristic works optimally on trees and generalize this result by showing that DAG Partitioning is solvable in 2O(t2)⋅n time if a width-t tree decomposition of the input graph is given. Thus, we improve an algorithm and answer an open question of Alamdari and Mehrabian (2012). We complement our algorithms by lower bounds on the running time of exact algorithms and on the effectivity of data reduction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2016.12.002</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-4805-218X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2017-03, Vol.220, p.134-160
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_1932131045
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithm engineering
Algorithms
Complement
Computer simulation
Data reduction
Evaluating heuristics
Graph algorithms
Graph theory
Graphs
Heuristic
Linear equations
Linear-time algorithms
Lower bounds
Multiway cut
NP-hard problem
Optimization
Partitioning
Polynomial-time data reduction
Run time (computers)
Studies
Trees (mathematics)
title Fixed-parameter algorithms for DAG Partitioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed-parameter%20algorithms%20for%20DAG%20Partitioning&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=van%20Bevern,%20Ren%C3%A9&rft.date=2017-03-31&rft.volume=220&rft.spage=134&rft.epage=160&rft.pages=134-160&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2016.12.002&rft_dat=%3Cproquest_cross%3E1932131045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932131045&rft_id=info:pmid/&rft_els_id=S0166218X16306205&rfr_iscdi=true