Fixed-parameter algorithms for DAG Partitioning
Finding the origin of short phrases propagating through the web has been formalized by Leskovec et al. (2009) as DAG Partitioning: given an arc-weighted directed acyclic graph on n vertices and m arcs, delete arcs with total weight at most k such that each resulting weakly-connected component con...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2017-03, Vol.220, p.134-160 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | |
container_start_page | 134 |
container_title | Discrete Applied Mathematics |
container_volume | 220 |
creator | van Bevern, René Bredereck, Robert Chopin, Morgan Hartung, Sepp Hüffner, Falk Nichterlein, André Suchý, Ondřej |
description | Finding the origin of short phrases propagating through the web has been formalized by Leskovec et al. (2009) as DAG Partitioning: given an arc-weighted directed acyclic graph on n vertices and m arcs, delete arcs with total weight at most k such that each resulting weakly-connected component contains exactly one sink—a vertex without outgoing arcs. DAG Partitioning is NP-hard.
We show an algorithm to solve DAG Partitioning in O(2k⋅(n+m)) time, that is, in linear time for fixed k. We complement it with linear-time executable data reduction rules. Our experiments show that, in combination, they can optimally solve DAG Partitioning on simulated citation networks within five minutes for k≤190 and m being 107 and larger. We use our obtained optimal solutions to evaluate the solution quality of Leskovec et al.’s heuristic.
We show that Leskovec et al.’s heuristic works optimally on trees and generalize this result by showing that DAG Partitioning is solvable in 2O(t2)⋅n time if a width-t tree decomposition of the input graph is given. Thus, we improve an algorithm and answer an open question of Alamdari and Mehrabian (2012).
We complement our algorithms by lower bounds on the running time of exact algorithms and on the effectivity of data reduction. |
doi_str_mv | 10.1016/j.dam.2016.12.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932131045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X16306205</els_id><sourcerecordid>1932131045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8810b0f52feef6e644241922b01b8b9b946072d736e021c0c5174a58daade1ec3</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmPwA7hV4tzOTtu0FadpsIE0CQ4gcYvS1B2p1mYkHWL_nkzjzMm2_J6f9TF2i5AgoJh1SaP6hIc2QZ4A8DM2wbLgsSgKPGeTsBAxx_Ljkl153wEAhmnCZkvzQ028U071NJKL1HZjnRk_ex-11kUP81X0qtxoRmMHM2yu2UWrtp5u_uqUvS8f3xZP8fpl9byYr2OdinKMyxKhhjbnLVErSGQZz7DivAasy7qqq0xAwZsiFQQcNegci0zlZaNUQ0g6nbK7092ds1978qPs7N4NIVJilXJMEbI8qPCk0s5676iVO2d65Q4SQR65yE4GLvLIRSKXgUvw3J88FN7_NuSk14YGTY1xpEfZWPOP-xe76GkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932131045</pqid></control><display><type>article</type><title>Fixed-parameter algorithms for DAG Partitioning</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>van Bevern, René ; Bredereck, Robert ; Chopin, Morgan ; Hartung, Sepp ; Hüffner, Falk ; Nichterlein, André ; Suchý, Ondřej</creator><creatorcontrib>van Bevern, René ; Bredereck, Robert ; Chopin, Morgan ; Hartung, Sepp ; Hüffner, Falk ; Nichterlein, André ; Suchý, Ondřej</creatorcontrib><description>Finding the origin of short phrases propagating through the web has been formalized by Leskovec et al. (2009) as DAG Partitioning: given an arc-weighted directed acyclic graph on n vertices and m arcs, delete arcs with total weight at most k such that each resulting weakly-connected component contains exactly one sink—a vertex without outgoing arcs. DAG Partitioning is NP-hard.
We show an algorithm to solve DAG Partitioning in O(2k⋅(n+m)) time, that is, in linear time for fixed k. We complement it with linear-time executable data reduction rules. Our experiments show that, in combination, they can optimally solve DAG Partitioning on simulated citation networks within five minutes for k≤190 and m being 107 and larger. We use our obtained optimal solutions to evaluate the solution quality of Leskovec et al.’s heuristic.
We show that Leskovec et al.’s heuristic works optimally on trees and generalize this result by showing that DAG Partitioning is solvable in 2O(t2)⋅n time if a width-t tree decomposition of the input graph is given. Thus, we improve an algorithm and answer an open question of Alamdari and Mehrabian (2012).
We complement our algorithms by lower bounds on the running time of exact algorithms and on the effectivity of data reduction.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2016.12.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithm engineering ; Algorithms ; Complement ; Computer simulation ; Data reduction ; Evaluating heuristics ; Graph algorithms ; Graph theory ; Graphs ; Heuristic ; Linear equations ; Linear-time algorithms ; Lower bounds ; Multiway cut ; NP-hard problem ; Optimization ; Partitioning ; Polynomial-time data reduction ; Run time (computers) ; Studies ; Trees (mathematics)</subject><ispartof>Discrete Applied Mathematics, 2017-03, Vol.220, p.134-160</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 31, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8810b0f52feef6e644241922b01b8b9b946072d736e021c0c5174a58daade1ec3</citedby><cites>FETCH-LOGICAL-c368t-8810b0f52feef6e644241922b01b8b9b946072d736e021c0c5174a58daade1ec3</cites><orcidid>0000-0002-4805-218X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X16306205$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>van Bevern, René</creatorcontrib><creatorcontrib>Bredereck, Robert</creatorcontrib><creatorcontrib>Chopin, Morgan</creatorcontrib><creatorcontrib>Hartung, Sepp</creatorcontrib><creatorcontrib>Hüffner, Falk</creatorcontrib><creatorcontrib>Nichterlein, André</creatorcontrib><creatorcontrib>Suchý, Ondřej</creatorcontrib><title>Fixed-parameter algorithms for DAG Partitioning</title><title>Discrete Applied Mathematics</title><description>Finding the origin of short phrases propagating through the web has been formalized by Leskovec et al. (2009) as DAG Partitioning: given an arc-weighted directed acyclic graph on n vertices and m arcs, delete arcs with total weight at most k such that each resulting weakly-connected component contains exactly one sink—a vertex without outgoing arcs. DAG Partitioning is NP-hard.
We show an algorithm to solve DAG Partitioning in O(2k⋅(n+m)) time, that is, in linear time for fixed k. We complement it with linear-time executable data reduction rules. Our experiments show that, in combination, they can optimally solve DAG Partitioning on simulated citation networks within five minutes for k≤190 and m being 107 and larger. We use our obtained optimal solutions to evaluate the solution quality of Leskovec et al.’s heuristic.
We show that Leskovec et al.’s heuristic works optimally on trees and generalize this result by showing that DAG Partitioning is solvable in 2O(t2)⋅n time if a width-t tree decomposition of the input graph is given. Thus, we improve an algorithm and answer an open question of Alamdari and Mehrabian (2012).
We complement our algorithms by lower bounds on the running time of exact algorithms and on the effectivity of data reduction.</description><subject>Algorithm engineering</subject><subject>Algorithms</subject><subject>Complement</subject><subject>Computer simulation</subject><subject>Data reduction</subject><subject>Evaluating heuristics</subject><subject>Graph algorithms</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Heuristic</subject><subject>Linear equations</subject><subject>Linear-time algorithms</subject><subject>Lower bounds</subject><subject>Multiway cut</subject><subject>NP-hard problem</subject><subject>Optimization</subject><subject>Partitioning</subject><subject>Polynomial-time data reduction</subject><subject>Run time (computers)</subject><subject>Studies</subject><subject>Trees (mathematics)</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwzAMhSMEEmPwA7hV4tzOTtu0FadpsIE0CQ4gcYvS1B2p1mYkHWL_nkzjzMm2_J6f9TF2i5AgoJh1SaP6hIc2QZ4A8DM2wbLgsSgKPGeTsBAxx_Ljkl153wEAhmnCZkvzQ028U071NJKL1HZjnRk_ex-11kUP81X0qtxoRmMHM2yu2UWrtp5u_uqUvS8f3xZP8fpl9byYr2OdinKMyxKhhjbnLVErSGQZz7DivAasy7qqq0xAwZsiFQQcNegci0zlZaNUQ0g6nbK7092ds1978qPs7N4NIVJilXJMEbI8qPCk0s5676iVO2d65Q4SQR65yE4GLvLIRSKXgUvw3J88FN7_NuSk14YGTY1xpEfZWPOP-xe76GkA</recordid><startdate>20170331</startdate><enddate>20170331</enddate><creator>van Bevern, René</creator><creator>Bredereck, Robert</creator><creator>Chopin, Morgan</creator><creator>Hartung, Sepp</creator><creator>Hüffner, Falk</creator><creator>Nichterlein, André</creator><creator>Suchý, Ondřej</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4805-218X</orcidid></search><sort><creationdate>20170331</creationdate><title>Fixed-parameter algorithms for DAG Partitioning</title><author>van Bevern, René ; Bredereck, Robert ; Chopin, Morgan ; Hartung, Sepp ; Hüffner, Falk ; Nichterlein, André ; Suchý, Ondřej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8810b0f52feef6e644241922b01b8b9b946072d736e021c0c5174a58daade1ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm engineering</topic><topic>Algorithms</topic><topic>Complement</topic><topic>Computer simulation</topic><topic>Data reduction</topic><topic>Evaluating heuristics</topic><topic>Graph algorithms</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Heuristic</topic><topic>Linear equations</topic><topic>Linear-time algorithms</topic><topic>Lower bounds</topic><topic>Multiway cut</topic><topic>NP-hard problem</topic><topic>Optimization</topic><topic>Partitioning</topic><topic>Polynomial-time data reduction</topic><topic>Run time (computers)</topic><topic>Studies</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Bevern, René</creatorcontrib><creatorcontrib>Bredereck, Robert</creatorcontrib><creatorcontrib>Chopin, Morgan</creatorcontrib><creatorcontrib>Hartung, Sepp</creatorcontrib><creatorcontrib>Hüffner, Falk</creatorcontrib><creatorcontrib>Nichterlein, André</creatorcontrib><creatorcontrib>Suchý, Ondřej</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Bevern, René</au><au>Bredereck, Robert</au><au>Chopin, Morgan</au><au>Hartung, Sepp</au><au>Hüffner, Falk</au><au>Nichterlein, André</au><au>Suchý, Ondřej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed-parameter algorithms for DAG Partitioning</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2017-03-31</date><risdate>2017</risdate><volume>220</volume><spage>134</spage><epage>160</epage><pages>134-160</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Finding the origin of short phrases propagating through the web has been formalized by Leskovec et al. (2009) as DAG Partitioning: given an arc-weighted directed acyclic graph on n vertices and m arcs, delete arcs with total weight at most k such that each resulting weakly-connected component contains exactly one sink—a vertex without outgoing arcs. DAG Partitioning is NP-hard.
We show an algorithm to solve DAG Partitioning in O(2k⋅(n+m)) time, that is, in linear time for fixed k. We complement it with linear-time executable data reduction rules. Our experiments show that, in combination, they can optimally solve DAG Partitioning on simulated citation networks within five minutes for k≤190 and m being 107 and larger. We use our obtained optimal solutions to evaluate the solution quality of Leskovec et al.’s heuristic.
We show that Leskovec et al.’s heuristic works optimally on trees and generalize this result by showing that DAG Partitioning is solvable in 2O(t2)⋅n time if a width-t tree decomposition of the input graph is given. Thus, we improve an algorithm and answer an open question of Alamdari and Mehrabian (2012).
We complement our algorithms by lower bounds on the running time of exact algorithms and on the effectivity of data reduction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2016.12.002</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-4805-218X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2017-03, Vol.220, p.134-160 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_1932131045 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithm engineering Algorithms Complement Computer simulation Data reduction Evaluating heuristics Graph algorithms Graph theory Graphs Heuristic Linear equations Linear-time algorithms Lower bounds Multiway cut NP-hard problem Optimization Partitioning Polynomial-time data reduction Run time (computers) Studies Trees (mathematics) |
title | Fixed-parameter algorithms for DAG Partitioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed-parameter%20algorithms%20for%20DAG%20Partitioning&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=van%20Bevern,%20Ren%C3%A9&rft.date=2017-03-31&rft.volume=220&rft.spage=134&rft.epage=160&rft.pages=134-160&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2016.12.002&rft_dat=%3Cproquest_cross%3E1932131045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932131045&rft_id=info:pmid/&rft_els_id=S0166218X16306205&rfr_iscdi=true |