A note on inventory policies for products with residual-life-dependent demand
•We study an inventory model for perishable products with age-dependent demand rate.•We assume a deterministic and concave decreasing demand structure.•We build on the EOQ model and solve the problem in a profit-maximizing framework.•In the linear demand case, we characterize the optimal policy.•In...
Gespeichert in:
Veröffentlicht in: | Applied Mathematical Modelling 2017-03, Vol.43, p.647-658 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 658 |
---|---|
container_issue | |
container_start_page | 647 |
container_title | Applied Mathematical Modelling |
container_volume | 43 |
creator | Caliskan Demirag, Ozgun Kumar, Sanjay Rao, K.S. Mallikarjuna |
description | •We study an inventory model for perishable products with age-dependent demand rate.•We assume a deterministic and concave decreasing demand structure.•We build on the EOQ model and solve the problem in a profit-maximizing framework.•In the linear demand case, we characterize the optimal policy.•In the general demand case, we propose an adaptive heuristic policy which converges to a feasible solution with good performance.
We study inventory ordering policies for products that attract demand at a decreasing rate as they approach the end of their usable lifetime, for example, perishable items nearing expiration. We consider the “product freshness’’, or equivalently, the time until expiration (“residual life”) as a factor influencing the customer demand. In a profit-maximizing framework, we build on the Economic Order Quantity (EOQ) replenishment model and formulate the inventory ordering problem using a deterministic demand function that is concave decreasing in the the age of the product. We provide analytical results on the optimal ordering policy, including an explicit characterization of the decisions in the linear-demand case, and we develop an easy-to-implement adaptive heuristic policy for the general case. Numerical examples show that the optimal policy generates significant profit gains compared to the traditional cost-based policies and the adaptive heuristic policy performs highly satisfactorily in the tested instances. |
doi_str_mv | 10.1016/j.apm.2016.08.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932121360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X16304310</els_id><sourcerecordid>1932121360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-8503820dc15a162a0d61d9320adcdebde7d33a8936a3843ed0fc5fff5be55a7d3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwAbhF4tziNGvXidM08U8a4gIStyiLXZGqS0rSDu3bk2kcOHHys-z3bP0YuxaQCxDVbZvrfpsXSeZQ5wDzEzYBCfNsAbOP0z_6nF3E2AJAmboJe1ly5wfi3nHrduQGH_a89501liJvfOB98DiaIfJvO3zyQNHiqLussw1lSD05TC6OtNUOL9lZo7tIV791yt4f7t9WT9n69fF5tVxnZibrIatLkHUBaESpRVVowErgQhag0SBtkOYopa4XstKynklCaEzZNE25obLUaThlN8fc9NzXSHFQrR-DSyeVSDmiELKCtCWOWyb4GAM1qg92q8NeCVAHaqpViZo6UFNQq0Qtee6OHkrv7ywFFRMJZwhtIDMo9PYf9w-M6HXu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932121360</pqid></control><display><type>article</type><title>A note on inventory policies for products with residual-life-dependent demand</title><source>EBSCOhost Business Source Complete</source><source>Education Source</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Caliskan Demirag, Ozgun ; Kumar, Sanjay ; Rao, K.S. Mallikarjuna</creator><creatorcontrib>Caliskan Demirag, Ozgun ; Kumar, Sanjay ; Rao, K.S. Mallikarjuna</creatorcontrib><description>•We study an inventory model for perishable products with age-dependent demand rate.•We assume a deterministic and concave decreasing demand structure.•We build on the EOQ model and solve the problem in a profit-maximizing framework.•In the linear demand case, we characterize the optimal policy.•In the general demand case, we propose an adaptive heuristic policy which converges to a feasible solution with good performance.
We study inventory ordering policies for products that attract demand at a decreasing rate as they approach the end of their usable lifetime, for example, perishable items nearing expiration. We consider the “product freshness’’, or equivalently, the time until expiration (“residual life”) as a factor influencing the customer demand. In a profit-maximizing framework, we build on the Economic Order Quantity (EOQ) replenishment model and formulate the inventory ordering problem using a deterministic demand function that is concave decreasing in the the age of the product. We provide analytical results on the optimal ordering policy, including an explicit characterization of the decisions in the linear-demand case, and we develop an easy-to-implement adaptive heuristic policy for the general case. Numerical examples show that the optimal policy generates significant profit gains compared to the traditional cost-based policies and the adaptive heuristic policy performs highly satisfactorily in the tested instances.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2016.08.007</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Adaptive policy ; Demand ; Economic models ; EOQ ; Expiration ; Freshness ; Heuristic ; Inventory management ; Mathematical models ; Optimization ; Order quantity ; Perishable inventory ; Policies ; Replenishment ; Residual-life-dependent demand ; Studies</subject><ispartof>Applied Mathematical Modelling, 2017-03, Vol.43, p.647-658</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright Elsevier BV Mar 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-8503820dc15a162a0d61d9320adcdebde7d33a8936a3843ed0fc5fff5be55a7d3</citedby><cites>FETCH-LOGICAL-c438t-8503820dc15a162a0d61d9320adcdebde7d33a8936a3843ed0fc5fff5be55a7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2016.08.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Caliskan Demirag, Ozgun</creatorcontrib><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Rao, K.S. Mallikarjuna</creatorcontrib><title>A note on inventory policies for products with residual-life-dependent demand</title><title>Applied Mathematical Modelling</title><description>•We study an inventory model for perishable products with age-dependent demand rate.•We assume a deterministic and concave decreasing demand structure.•We build on the EOQ model and solve the problem in a profit-maximizing framework.•In the linear demand case, we characterize the optimal policy.•In the general demand case, we propose an adaptive heuristic policy which converges to a feasible solution with good performance.
We study inventory ordering policies for products that attract demand at a decreasing rate as they approach the end of their usable lifetime, for example, perishable items nearing expiration. We consider the “product freshness’’, or equivalently, the time until expiration (“residual life”) as a factor influencing the customer demand. In a profit-maximizing framework, we build on the Economic Order Quantity (EOQ) replenishment model and formulate the inventory ordering problem using a deterministic demand function that is concave decreasing in the the age of the product. We provide analytical results on the optimal ordering policy, including an explicit characterization of the decisions in the linear-demand case, and we develop an easy-to-implement adaptive heuristic policy for the general case. Numerical examples show that the optimal policy generates significant profit gains compared to the traditional cost-based policies and the adaptive heuristic policy performs highly satisfactorily in the tested instances.</description><subject>Adaptive policy</subject><subject>Demand</subject><subject>Economic models</subject><subject>EOQ</subject><subject>Expiration</subject><subject>Freshness</subject><subject>Heuristic</subject><subject>Inventory management</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Order quantity</subject><subject>Perishable inventory</subject><subject>Policies</subject><subject>Replenishment</subject><subject>Residual-life-dependent demand</subject><subject>Studies</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwAbhF4tziNGvXidM08U8a4gIStyiLXZGqS0rSDu3bk2kcOHHys-z3bP0YuxaQCxDVbZvrfpsXSeZQ5wDzEzYBCfNsAbOP0z_6nF3E2AJAmboJe1ly5wfi3nHrduQGH_a89501liJvfOB98DiaIfJvO3zyQNHiqLussw1lSD05TC6OtNUOL9lZo7tIV791yt4f7t9WT9n69fF5tVxnZibrIatLkHUBaESpRVVowErgQhag0SBtkOYopa4XstKynklCaEzZNE25obLUaThlN8fc9NzXSHFQrR-DSyeVSDmiELKCtCWOWyb4GAM1qg92q8NeCVAHaqpViZo6UFNQq0Qtee6OHkrv7ywFFRMJZwhtIDMo9PYf9w-M6HXu</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Caliskan Demirag, Ozgun</creator><creator>Kumar, Sanjay</creator><creator>Rao, K.S. Mallikarjuna</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170301</creationdate><title>A note on inventory policies for products with residual-life-dependent demand</title><author>Caliskan Demirag, Ozgun ; Kumar, Sanjay ; Rao, K.S. Mallikarjuna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-8503820dc15a162a0d61d9320adcdebde7d33a8936a3843ed0fc5fff5be55a7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive policy</topic><topic>Demand</topic><topic>Economic models</topic><topic>EOQ</topic><topic>Expiration</topic><topic>Freshness</topic><topic>Heuristic</topic><topic>Inventory management</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Order quantity</topic><topic>Perishable inventory</topic><topic>Policies</topic><topic>Replenishment</topic><topic>Residual-life-dependent demand</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caliskan Demirag, Ozgun</creatorcontrib><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Rao, K.S. Mallikarjuna</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caliskan Demirag, Ozgun</au><au>Kumar, Sanjay</au><au>Rao, K.S. Mallikarjuna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on inventory policies for products with residual-life-dependent demand</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>43</volume><spage>647</spage><epage>658</epage><pages>647-658</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•We study an inventory model for perishable products with age-dependent demand rate.•We assume a deterministic and concave decreasing demand structure.•We build on the EOQ model and solve the problem in a profit-maximizing framework.•In the linear demand case, we characterize the optimal policy.•In the general demand case, we propose an adaptive heuristic policy which converges to a feasible solution with good performance.
We study inventory ordering policies for products that attract demand at a decreasing rate as they approach the end of their usable lifetime, for example, perishable items nearing expiration. We consider the “product freshness’’, or equivalently, the time until expiration (“residual life”) as a factor influencing the customer demand. In a profit-maximizing framework, we build on the Economic Order Quantity (EOQ) replenishment model and formulate the inventory ordering problem using a deterministic demand function that is concave decreasing in the the age of the product. We provide analytical results on the optimal ordering policy, including an explicit characterization of the decisions in the linear-demand case, and we develop an easy-to-implement adaptive heuristic policy for the general case. Numerical examples show that the optimal policy generates significant profit gains compared to the traditional cost-based policies and the adaptive heuristic policy performs highly satisfactorily in the tested instances.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2016.08.007</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied Mathematical Modelling, 2017-03, Vol.43, p.647-658 |
issn | 0307-904X 1088-8691 0307-904X |
language | eng |
recordid | cdi_proquest_journals_1932121360 |
source | EBSCOhost Business Source Complete; Education Source; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Adaptive policy Demand Economic models EOQ Expiration Freshness Heuristic Inventory management Mathematical models Optimization Order quantity Perishable inventory Policies Replenishment Residual-life-dependent demand Studies |
title | A note on inventory policies for products with residual-life-dependent demand |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20inventory%20policies%20for%20products%20with%20residual-life-dependent%20demand&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Caliskan%20Demirag,%20Ozgun&rft.date=2017-03-01&rft.volume=43&rft.spage=647&rft.epage=658&rft.pages=647-658&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2016.08.007&rft_dat=%3Cproquest_cross%3E1932121360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932121360&rft_id=info:pmid/&rft_els_id=S0307904X16304310&rfr_iscdi=true |