Effect of Gedeon streaming on thermal efficiency of a travelling-wave thermoacoustic engine

•The enthalpy flow carried by Gedeon streaming interacts with the local temperature.•Mechanism beneath the effect of Gedeon streaming on thermal efficiency is revealed.•Gedeon streaming changes the energy flow rates related to entropy transportation.•The unique temperature profile is the key essence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2017-03, Vol.115, p.1089-1100
Hauptverfasser: Tang, Ke, Feng, Ye, Jin, Tao, Jin, Shenghan, Li, Ming, Yang, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1100
container_issue
container_start_page 1089
container_title Applied thermal engineering
container_volume 115
creator Tang, Ke
Feng, Ye
Jin, Tao
Jin, Shenghan
Li, Ming
Yang, Rui
description •The enthalpy flow carried by Gedeon streaming interacts with the local temperature.•Mechanism beneath the effect of Gedeon streaming on thermal efficiency is revealed.•Gedeon streaming changes the energy flow rates related to entropy transportation.•The unique temperature profile is the key essence. Gedeon streaming can lead to a drastic decrease in thermal efficiency of a travelling-wave thermoacoustic engine with looped configuration, which is conventionally attributed to the thermal loss carried by the streaming. This paper addresses the interdependence between the enthalpy flow carried by Gedeon streaming and the local temperature. Taking the newly developed four-stage travelling-wave thermoacoustic engine as an example, the simulations for various amounts of Gedeon streaming have been conducted to analyze the interaction between the enthalpy flow rate delivered by Gedeon streaming and the local temperature inside the regenerator and the thermal buffer tube. The characteristics of acoustic field, the impact of Gedeon streaming on the temperature profiles, the generated acoustic power and also the required input of heating power are presented and discussed in detail. The results indicate that the varying temperature profiles inside the regenerator and the thermal buffer tube, caused by the various amounts of Gedeon streaming, can substantially change certain energy flow rates, i.e., equivalent acoustic power and equivalent conduction heat flow rate due to the entropy transportation. This is the essential mechanism for Gedeon streaming affecting the thermal efficiency, instead of the enthalpy flow itself carried by the Gedeon streaming as the thermal loss.
doi_str_mv 10.1016/j.applthermaleng.2017.01.054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932120438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431116320348</els_id><sourcerecordid>1932120438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5e5ec466b40c0053ce154c9090ca1a60910a7b18ad4439b8a4ed9950b9d204883</originalsourceid><addsrcrecordid>eNqNkMFOwzAMhiMEEmPwDpXg2mI3SddIXNC0DaRJXODEIcpSd2Tq2pJ0Q7w9GduFG6c40uff9sfYHUKGgMX9JjN93wwf5LemoXad5YCTDDADKc7YCMsJT2UBxXmsuVSp4IiX7CqEDQDm5USM2PusrskOSVcnC6qoa5MweDJb166T-DllJ1TXzjpq7feBNMngzZ6aJlLpV6yOXGdstwuDs0ncxbV0zS5q0wS6Ob1j9jafvU6f0uXL4nn6uEwtl-WQSpJkRVGsBFgAyS2hFFaBAmvQFKAQzGSFpamE4GpVGkGVUhJWqspBlCUfs9tjbu-7zx2FQW-6nW_jSI2K5xgpfqAejpT1XQieat17tzX-WyPog0690X916oNODaijztg-P7ZTvGTvyOvwK4Qq56NAXXXuf0E_B1qHVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932120438</pqid></control><display><type>article</type><title>Effect of Gedeon streaming on thermal efficiency of a travelling-wave thermoacoustic engine</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tang, Ke ; Feng, Ye ; Jin, Tao ; Jin, Shenghan ; Li, Ming ; Yang, Rui</creator><creatorcontrib>Tang, Ke ; Feng, Ye ; Jin, Tao ; Jin, Shenghan ; Li, Ming ; Yang, Rui</creatorcontrib><description>•The enthalpy flow carried by Gedeon streaming interacts with the local temperature.•Mechanism beneath the effect of Gedeon streaming on thermal efficiency is revealed.•Gedeon streaming changes the energy flow rates related to entropy transportation.•The unique temperature profile is the key essence. Gedeon streaming can lead to a drastic decrease in thermal efficiency of a travelling-wave thermoacoustic engine with looped configuration, which is conventionally attributed to the thermal loss carried by the streaming. This paper addresses the interdependence between the enthalpy flow carried by Gedeon streaming and the local temperature. Taking the newly developed four-stage travelling-wave thermoacoustic engine as an example, the simulations for various amounts of Gedeon streaming have been conducted to analyze the interaction between the enthalpy flow rate delivered by Gedeon streaming and the local temperature inside the regenerator and the thermal buffer tube. The characteristics of acoustic field, the impact of Gedeon streaming on the temperature profiles, the generated acoustic power and also the required input of heating power are presented and discussed in detail. The results indicate that the varying temperature profiles inside the regenerator and the thermal buffer tube, caused by the various amounts of Gedeon streaming, can substantially change certain energy flow rates, i.e., equivalent acoustic power and equivalent conduction heat flow rate due to the entropy transportation. This is the essential mechanism for Gedeon streaming affecting the thermal efficiency, instead of the enthalpy flow itself carried by the Gedeon streaming as the thermal loss.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2017.01.054</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Buffers ; Conduction heating ; Energy efficiency ; Energy flow ; Enthalpy ; Entropy ; Equivalence ; Flow velocity ; Gedeon streaming ; Heat transfer ; Heat transmission ; Low-grade thermal energy ; Temperature profiles ; Thermal efficiency ; Thermal energy ; Thermoacoustic engine ; Thermodynamic efficiency ; Thermodynamics ; Travelling wave</subject><ispartof>Applied thermal engineering, 2017-03, Vol.115, p.1089-1100</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 25, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-5e5ec466b40c0053ce154c9090ca1a60910a7b18ad4439b8a4ed9950b9d204883</citedby><cites>FETCH-LOGICAL-c358t-5e5ec466b40c0053ce154c9090ca1a60910a7b18ad4439b8a4ed9950b9d204883</cites><orcidid>0000-0002-9301-4502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431116320348$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tang, Ke</creatorcontrib><creatorcontrib>Feng, Ye</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Jin, Shenghan</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><title>Effect of Gedeon streaming on thermal efficiency of a travelling-wave thermoacoustic engine</title><title>Applied thermal engineering</title><description>•The enthalpy flow carried by Gedeon streaming interacts with the local temperature.•Mechanism beneath the effect of Gedeon streaming on thermal efficiency is revealed.•Gedeon streaming changes the energy flow rates related to entropy transportation.•The unique temperature profile is the key essence. Gedeon streaming can lead to a drastic decrease in thermal efficiency of a travelling-wave thermoacoustic engine with looped configuration, which is conventionally attributed to the thermal loss carried by the streaming. This paper addresses the interdependence between the enthalpy flow carried by Gedeon streaming and the local temperature. Taking the newly developed four-stage travelling-wave thermoacoustic engine as an example, the simulations for various amounts of Gedeon streaming have been conducted to analyze the interaction between the enthalpy flow rate delivered by Gedeon streaming and the local temperature inside the regenerator and the thermal buffer tube. The characteristics of acoustic field, the impact of Gedeon streaming on the temperature profiles, the generated acoustic power and also the required input of heating power are presented and discussed in detail. The results indicate that the varying temperature profiles inside the regenerator and the thermal buffer tube, caused by the various amounts of Gedeon streaming, can substantially change certain energy flow rates, i.e., equivalent acoustic power and equivalent conduction heat flow rate due to the entropy transportation. This is the essential mechanism for Gedeon streaming affecting the thermal efficiency, instead of the enthalpy flow itself carried by the Gedeon streaming as the thermal loss.</description><subject>Buffers</subject><subject>Conduction heating</subject><subject>Energy efficiency</subject><subject>Energy flow</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Equivalence</subject><subject>Flow velocity</subject><subject>Gedeon streaming</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Low-grade thermal energy</subject><subject>Temperature profiles</subject><subject>Thermal efficiency</subject><subject>Thermal energy</subject><subject>Thermoacoustic engine</subject><subject>Thermodynamic efficiency</subject><subject>Thermodynamics</subject><subject>Travelling wave</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkMFOwzAMhiMEEmPwDpXg2mI3SddIXNC0DaRJXODEIcpSd2Tq2pJ0Q7w9GduFG6c40uff9sfYHUKGgMX9JjN93wwf5LemoXad5YCTDDADKc7YCMsJT2UBxXmsuVSp4IiX7CqEDQDm5USM2PusrskOSVcnC6qoa5MweDJb166T-DllJ1TXzjpq7feBNMngzZ6aJlLpV6yOXGdstwuDs0ncxbV0zS5q0wS6Ob1j9jafvU6f0uXL4nn6uEwtl-WQSpJkRVGsBFgAyS2hFFaBAmvQFKAQzGSFpamE4GpVGkGVUhJWqspBlCUfs9tjbu-7zx2FQW-6nW_jSI2K5xgpfqAejpT1XQieat17tzX-WyPog0690X916oNODaijztg-P7ZTvGTvyOvwK4Qq56NAXXXuf0E_B1qHVQ</recordid><startdate>20170325</startdate><enddate>20170325</enddate><creator>Tang, Ke</creator><creator>Feng, Ye</creator><creator>Jin, Tao</creator><creator>Jin, Shenghan</creator><creator>Li, Ming</creator><creator>Yang, Rui</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-9301-4502</orcidid></search><sort><creationdate>20170325</creationdate><title>Effect of Gedeon streaming on thermal efficiency of a travelling-wave thermoacoustic engine</title><author>Tang, Ke ; Feng, Ye ; Jin, Tao ; Jin, Shenghan ; Li, Ming ; Yang, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5e5ec466b40c0053ce154c9090ca1a60910a7b18ad4439b8a4ed9950b9d204883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Buffers</topic><topic>Conduction heating</topic><topic>Energy efficiency</topic><topic>Energy flow</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Equivalence</topic><topic>Flow velocity</topic><topic>Gedeon streaming</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Low-grade thermal energy</topic><topic>Temperature profiles</topic><topic>Thermal efficiency</topic><topic>Thermal energy</topic><topic>Thermoacoustic engine</topic><topic>Thermodynamic efficiency</topic><topic>Thermodynamics</topic><topic>Travelling wave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Ke</creatorcontrib><creatorcontrib>Feng, Ye</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Jin, Shenghan</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Ke</au><au>Feng, Ye</au><au>Jin, Tao</au><au>Jin, Shenghan</au><au>Li, Ming</au><au>Yang, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Gedeon streaming on thermal efficiency of a travelling-wave thermoacoustic engine</atitle><jtitle>Applied thermal engineering</jtitle><date>2017-03-25</date><risdate>2017</risdate><volume>115</volume><spage>1089</spage><epage>1100</epage><pages>1089-1100</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•The enthalpy flow carried by Gedeon streaming interacts with the local temperature.•Mechanism beneath the effect of Gedeon streaming on thermal efficiency is revealed.•Gedeon streaming changes the energy flow rates related to entropy transportation.•The unique temperature profile is the key essence. Gedeon streaming can lead to a drastic decrease in thermal efficiency of a travelling-wave thermoacoustic engine with looped configuration, which is conventionally attributed to the thermal loss carried by the streaming. This paper addresses the interdependence between the enthalpy flow carried by Gedeon streaming and the local temperature. Taking the newly developed four-stage travelling-wave thermoacoustic engine as an example, the simulations for various amounts of Gedeon streaming have been conducted to analyze the interaction between the enthalpy flow rate delivered by Gedeon streaming and the local temperature inside the regenerator and the thermal buffer tube. The characteristics of acoustic field, the impact of Gedeon streaming on the temperature profiles, the generated acoustic power and also the required input of heating power are presented and discussed in detail. The results indicate that the varying temperature profiles inside the regenerator and the thermal buffer tube, caused by the various amounts of Gedeon streaming, can substantially change certain energy flow rates, i.e., equivalent acoustic power and equivalent conduction heat flow rate due to the entropy transportation. This is the essential mechanism for Gedeon streaming affecting the thermal efficiency, instead of the enthalpy flow itself carried by the Gedeon streaming as the thermal loss.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2017.01.054</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9301-4502</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2017-03, Vol.115, p.1089-1100
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_1932120438
source Elsevier ScienceDirect Journals Complete
subjects Buffers
Conduction heating
Energy efficiency
Energy flow
Enthalpy
Entropy
Equivalence
Flow velocity
Gedeon streaming
Heat transfer
Heat transmission
Low-grade thermal energy
Temperature profiles
Thermal efficiency
Thermal energy
Thermoacoustic engine
Thermodynamic efficiency
Thermodynamics
Travelling wave
title Effect of Gedeon streaming on thermal efficiency of a travelling-wave thermoacoustic engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Gedeon%20streaming%20on%20thermal%20efficiency%20of%20a%20travelling-wave%20thermoacoustic%20engine&rft.jtitle=Applied%20thermal%20engineering&rft.au=Tang,%20Ke&rft.date=2017-03-25&rft.volume=115&rft.spage=1089&rft.epage=1100&rft.pages=1089-1100&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2017.01.054&rft_dat=%3Cproquest_cross%3E1932120438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932120438&rft_id=info:pmid/&rft_els_id=S1359431116320348&rfr_iscdi=true