Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment
•EIS is employed to investigate the MEA design of a PEM fuel cell.•Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied.•MPL increases cell output at low to medium currents but reduces it at high currents.•Better results are obtained when employing a thinner Nafion membrane.•...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2017-01, Vol.224, p.337-345 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | |
container_start_page | 337 |
container_title | Electrochimica acta |
container_volume | 224 |
creator | Ferreira, Rui B. Falcão, D.S. Oliveira, V.B. Pinto, A.M.F.R. |
description | •EIS is employed to investigate the MEA design of a PEM fuel cell.•Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied.•MPL increases cell output at low to medium currents but reduces it at high currents.•Better results are obtained when employing a thinner Nafion membrane.•GDL hydrophobic treatment improves the cell performance.
In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs. |
doi_str_mv | 10.1016/j.electacta.2016.12.074 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932120422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468616326214</els_id><sourcerecordid>1932120422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-6d389e23c82ea0c975bb8f3042ea9803bbd48c80ecaac19b0dd2c4e5109982363</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpodO0z1BBt7GjH48tZxdCkgYC3bRrIUtXsaYeayrJIfNwfbfcmSltdgWB0OV8Rzo6hHzmrOaMtxebGiawxeCqBQ5qLmrWNW_IiqtOVlKt-7dkxRiXVdOq9j35kPOGMda1HVuR3zfPO0hhC3MxE81lcXsaZ1pGoFvYDsnMQI_-KTqgJmccTijx1NBdigW18GxHMz--AvwCE7UwTZcUvEc4H4BtsCnuYopLppPZQzr_R5Qx2J8z5EzN7OijydQF75cc0P-opePeIT3GIVhaEphyePJH8s6bKcOnP_sZ-XF78_36a_Xw7e7--uqhsg3rStU6qXoQ0ioBhtm-Ww-D8pI1eOwVk8PgGmUVA2uM5f3AnBO2gTVnfa-EbOUZ-XLyxci_FshFb-KSZrxS814KLtBKoKo7qTBnzgm83uHPmrTXnOlDV3qj_3alD11pLjR2heTViQQM8RQg6WwDzBZcSKjXLob_erwAHienAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932120422</pqid></control><display><type>article</type><title>Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment</title><source>Elsevier ScienceDirect Journals</source><creator>Ferreira, Rui B. ; Falcão, D.S. ; Oliveira, V.B. ; Pinto, A.M.F.R.</creator><creatorcontrib>Ferreira, Rui B. ; Falcão, D.S. ; Oliveira, V.B. ; Pinto, A.M.F.R.</creatorcontrib><description>•EIS is employed to investigate the MEA design of a PEM fuel cell.•Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied.•MPL increases cell output at low to medium currents but reduces it at high currents.•Better results are obtained when employing a thinner Nafion membrane.•GDL hydrophobic treatment improves the cell performance.
In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2016.12.074</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Dehydration ; Diffusion layers ; Electrochemical impedance spectroscopy ; Flooding ; Fuel cells ; Gaseous diffusion ; GDL hydrophobic treatment ; Humidification ; Humidity ; Hydration ; Mass transfer ; Maximum power density ; membrane thickness ; microporous layer ; Moisture content ; PEM fuel cells ; Spectroscopic analysis ; Spectrum analysis ; Studies ; Thickness ; Water ; Water flooding</subject><ispartof>Electrochimica acta, 2017-01, Vol.224, p.337-345</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 10, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-6d389e23c82ea0c975bb8f3042ea9803bbd48c80ecaac19b0dd2c4e5109982363</citedby><cites>FETCH-LOGICAL-c407t-6d389e23c82ea0c975bb8f3042ea9803bbd48c80ecaac19b0dd2c4e5109982363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468616326214$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ferreira, Rui B.</creatorcontrib><creatorcontrib>Falcão, D.S.</creatorcontrib><creatorcontrib>Oliveira, V.B.</creatorcontrib><creatorcontrib>Pinto, A.M.F.R.</creatorcontrib><title>Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment</title><title>Electrochimica acta</title><description>•EIS is employed to investigate the MEA design of a PEM fuel cell.•Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied.•MPL increases cell output at low to medium currents but reduces it at high currents.•Better results are obtained when employing a thinner Nafion membrane.•GDL hydrophobic treatment improves the cell performance.
In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.</description><subject>Dehydration</subject><subject>Diffusion layers</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Flooding</subject><subject>Fuel cells</subject><subject>Gaseous diffusion</subject><subject>GDL hydrophobic treatment</subject><subject>Humidification</subject><subject>Humidity</subject><subject>Hydration</subject><subject>Mass transfer</subject><subject>Maximum power density</subject><subject>membrane thickness</subject><subject>microporous layer</subject><subject>Moisture content</subject><subject>PEM fuel cells</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Thickness</subject><subject>Water</subject><subject>Water flooding</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhUVpodO0z1BBt7GjH48tZxdCkgYC3bRrIUtXsaYeayrJIfNwfbfcmSltdgWB0OV8Rzo6hHzmrOaMtxebGiawxeCqBQ5qLmrWNW_IiqtOVlKt-7dkxRiXVdOq9j35kPOGMda1HVuR3zfPO0hhC3MxE81lcXsaZ1pGoFvYDsnMQI_-KTqgJmccTijx1NBdigW18GxHMz--AvwCE7UwTZcUvEc4H4BtsCnuYopLppPZQzr_R5Qx2J8z5EzN7OijydQF75cc0P-opePeIT3GIVhaEphyePJH8s6bKcOnP_sZ-XF78_36a_Xw7e7--uqhsg3rStU6qXoQ0ioBhtm-Ww-D8pI1eOwVk8PgGmUVA2uM5f3AnBO2gTVnfa-EbOUZ-XLyxci_FshFb-KSZrxS814KLtBKoKo7qTBnzgm83uHPmrTXnOlDV3qj_3alD11pLjR2heTViQQM8RQg6WwDzBZcSKjXLob_erwAHienAg</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Ferreira, Rui B.</creator><creator>Falcão, D.S.</creator><creator>Oliveira, V.B.</creator><creator>Pinto, A.M.F.R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170110</creationdate><title>Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment</title><author>Ferreira, Rui B. ; Falcão, D.S. ; Oliveira, V.B. ; Pinto, A.M.F.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-6d389e23c82ea0c975bb8f3042ea9803bbd48c80ecaac19b0dd2c4e5109982363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dehydration</topic><topic>Diffusion layers</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Flooding</topic><topic>Fuel cells</topic><topic>Gaseous diffusion</topic><topic>GDL hydrophobic treatment</topic><topic>Humidification</topic><topic>Humidity</topic><topic>Hydration</topic><topic>Mass transfer</topic><topic>Maximum power density</topic><topic>membrane thickness</topic><topic>microporous layer</topic><topic>Moisture content</topic><topic>PEM fuel cells</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Thickness</topic><topic>Water</topic><topic>Water flooding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Rui B.</creatorcontrib><creatorcontrib>Falcão, D.S.</creatorcontrib><creatorcontrib>Oliveira, V.B.</creatorcontrib><creatorcontrib>Pinto, A.M.F.R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Rui B.</au><au>Falcão, D.S.</au><au>Oliveira, V.B.</au><au>Pinto, A.M.F.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment</atitle><jtitle>Electrochimica acta</jtitle><date>2017-01-10</date><risdate>2017</risdate><volume>224</volume><spage>337</spage><epage>345</epage><pages>337-345</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•EIS is employed to investigate the MEA design of a PEM fuel cell.•Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied.•MPL increases cell output at low to medium currents but reduces it at high currents.•Better results are obtained when employing a thinner Nafion membrane.•GDL hydrophobic treatment improves the cell performance.
In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2016.12.074</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2017-01, Vol.224, p.337-345 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_1932120422 |
source | Elsevier ScienceDirect Journals |
subjects | Dehydration Diffusion layers Electrochemical impedance spectroscopy Flooding Fuel cells Gaseous diffusion GDL hydrophobic treatment Humidification Humidity Hydration Mass transfer Maximum power density membrane thickness microporous layer Moisture content PEM fuel cells Spectroscopic analysis Spectrum analysis Studies Thickness Water Water flooding |
title | Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20on%20the%20membrane%20electrode%20assembly%20of%20a%20proton%20exchange%20membrane%20fuel%20cell:%20effects%20of%20microporous%20layer,%20membrane%20thickness%20and%20gas%20diffusion%20layer%20hydrophobic%20treatment&rft.jtitle=Electrochimica%20acta&rft.au=Ferreira,%20Rui%20B.&rft.date=2017-01-10&rft.volume=224&rft.spage=337&rft.epage=345&rft.pages=337-345&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2016.12.074&rft_dat=%3Cproquest_cross%3E1932120422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932120422&rft_id=info:pmid/&rft_els_id=S0013468616326214&rfr_iscdi=true |