Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment

•EIS is employed to investigate the MEA design of a PEM fuel cell.•Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied.•MPL increases cell output at low to medium currents but reduces it at high currents.•Better results are obtained when employing a thinner Nafion membrane.•...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2017-01, Vol.224, p.337-345
Hauptverfasser: Ferreira, Rui B., Falcão, D.S., Oliveira, V.B., Pinto, A.M.F.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 345
container_issue
container_start_page 337
container_title Electrochimica acta
container_volume 224
creator Ferreira, Rui B.
Falcão, D.S.
Oliveira, V.B.
Pinto, A.M.F.R.
description •EIS is employed to investigate the MEA design of a PEM fuel cell.•Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied.•MPL increases cell output at low to medium currents but reduces it at high currents.•Better results are obtained when employing a thinner Nafion membrane.•GDL hydrophobic treatment improves the cell performance. In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.
doi_str_mv 10.1016/j.electacta.2016.12.074
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932120422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468616326214</els_id><sourcerecordid>1932120422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-6d389e23c82ea0c975bb8f3042ea9803bbd48c80ecaac19b0dd2c4e5109982363</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpodO0z1BBt7GjH48tZxdCkgYC3bRrIUtXsaYeayrJIfNwfbfcmSltdgWB0OV8Rzo6hHzmrOaMtxebGiawxeCqBQ5qLmrWNW_IiqtOVlKt-7dkxRiXVdOq9j35kPOGMda1HVuR3zfPO0hhC3MxE81lcXsaZ1pGoFvYDsnMQI_-KTqgJmccTijx1NBdigW18GxHMz--AvwCE7UwTZcUvEc4H4BtsCnuYopLppPZQzr_R5Qx2J8z5EzN7OijydQF75cc0P-opePeIT3GIVhaEphyePJH8s6bKcOnP_sZ-XF78_36a_Xw7e7--uqhsg3rStU6qXoQ0ioBhtm-Ww-D8pI1eOwVk8PgGmUVA2uM5f3AnBO2gTVnfa-EbOUZ-XLyxci_FshFb-KSZrxS814KLtBKoKo7qTBnzgm83uHPmrTXnOlDV3qj_3alD11pLjR2heTViQQM8RQg6WwDzBZcSKjXLob_erwAHienAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932120422</pqid></control><display><type>article</type><title>Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment</title><source>Elsevier ScienceDirect Journals</source><creator>Ferreira, Rui B. ; Falcão, D.S. ; Oliveira, V.B. ; Pinto, A.M.F.R.</creator><creatorcontrib>Ferreira, Rui B. ; Falcão, D.S. ; Oliveira, V.B. ; Pinto, A.M.F.R.</creatorcontrib><description>•EIS is employed to investigate the MEA design of a PEM fuel cell.•Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied.•MPL increases cell output at low to medium currents but reduces it at high currents.•Better results are obtained when employing a thinner Nafion membrane.•GDL hydrophobic treatment improves the cell performance. In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2016.12.074</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Dehydration ; Diffusion layers ; Electrochemical impedance spectroscopy ; Flooding ; Fuel cells ; Gaseous diffusion ; GDL hydrophobic treatment ; Humidification ; Humidity ; Hydration ; Mass transfer ; Maximum power density ; membrane thickness ; microporous layer ; Moisture content ; PEM fuel cells ; Spectroscopic analysis ; Spectrum analysis ; Studies ; Thickness ; Water ; Water flooding</subject><ispartof>Electrochimica acta, 2017-01, Vol.224, p.337-345</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 10, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-6d389e23c82ea0c975bb8f3042ea9803bbd48c80ecaac19b0dd2c4e5109982363</citedby><cites>FETCH-LOGICAL-c407t-6d389e23c82ea0c975bb8f3042ea9803bbd48c80ecaac19b0dd2c4e5109982363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468616326214$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ferreira, Rui B.</creatorcontrib><creatorcontrib>Falcão, D.S.</creatorcontrib><creatorcontrib>Oliveira, V.B.</creatorcontrib><creatorcontrib>Pinto, A.M.F.R.</creatorcontrib><title>Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment</title><title>Electrochimica acta</title><description>•EIS is employed to investigate the MEA design of a PEM fuel cell.•Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied.•MPL increases cell output at low to medium currents but reduces it at high currents.•Better results are obtained when employing a thinner Nafion membrane.•GDL hydrophobic treatment improves the cell performance. In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.</description><subject>Dehydration</subject><subject>Diffusion layers</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Flooding</subject><subject>Fuel cells</subject><subject>Gaseous diffusion</subject><subject>GDL hydrophobic treatment</subject><subject>Humidification</subject><subject>Humidity</subject><subject>Hydration</subject><subject>Mass transfer</subject><subject>Maximum power density</subject><subject>membrane thickness</subject><subject>microporous layer</subject><subject>Moisture content</subject><subject>PEM fuel cells</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Thickness</subject><subject>Water</subject><subject>Water flooding</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhUVpodO0z1BBt7GjH48tZxdCkgYC3bRrIUtXsaYeayrJIfNwfbfcmSltdgWB0OV8Rzo6hHzmrOaMtxebGiawxeCqBQ5qLmrWNW_IiqtOVlKt-7dkxRiXVdOq9j35kPOGMda1HVuR3zfPO0hhC3MxE81lcXsaZ1pGoFvYDsnMQI_-KTqgJmccTijx1NBdigW18GxHMz--AvwCE7UwTZcUvEc4H4BtsCnuYopLppPZQzr_R5Qx2J8z5EzN7OijydQF75cc0P-opePeIT3GIVhaEphyePJH8s6bKcOnP_sZ-XF78_36a_Xw7e7--uqhsg3rStU6qXoQ0ioBhtm-Ww-D8pI1eOwVk8PgGmUVA2uM5f3AnBO2gTVnfa-EbOUZ-XLyxci_FshFb-KSZrxS814KLtBKoKo7qTBnzgm83uHPmrTXnOlDV3qj_3alD11pLjR2heTViQQM8RQg6WwDzBZcSKjXLob_erwAHienAg</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Ferreira, Rui B.</creator><creator>Falcão, D.S.</creator><creator>Oliveira, V.B.</creator><creator>Pinto, A.M.F.R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170110</creationdate><title>Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment</title><author>Ferreira, Rui B. ; Falcão, D.S. ; Oliveira, V.B. ; Pinto, A.M.F.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-6d389e23c82ea0c975bb8f3042ea9803bbd48c80ecaac19b0dd2c4e5109982363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dehydration</topic><topic>Diffusion layers</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Flooding</topic><topic>Fuel cells</topic><topic>Gaseous diffusion</topic><topic>GDL hydrophobic treatment</topic><topic>Humidification</topic><topic>Humidity</topic><topic>Hydration</topic><topic>Mass transfer</topic><topic>Maximum power density</topic><topic>membrane thickness</topic><topic>microporous layer</topic><topic>Moisture content</topic><topic>PEM fuel cells</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Thickness</topic><topic>Water</topic><topic>Water flooding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Rui B.</creatorcontrib><creatorcontrib>Falcão, D.S.</creatorcontrib><creatorcontrib>Oliveira, V.B.</creatorcontrib><creatorcontrib>Pinto, A.M.F.R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Rui B.</au><au>Falcão, D.S.</au><au>Oliveira, V.B.</au><au>Pinto, A.M.F.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment</atitle><jtitle>Electrochimica acta</jtitle><date>2017-01-10</date><risdate>2017</risdate><volume>224</volume><spage>337</spage><epage>345</epage><pages>337-345</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•EIS is employed to investigate the MEA design of a PEM fuel cell.•Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied.•MPL increases cell output at low to medium currents but reduces it at high currents.•Better results are obtained when employing a thinner Nafion membrane.•GDL hydrophobic treatment improves the cell performance. In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2016.12.074</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2017-01, Vol.224, p.337-345
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_1932120422
source Elsevier ScienceDirect Journals
subjects Dehydration
Diffusion layers
Electrochemical impedance spectroscopy
Flooding
Fuel cells
Gaseous diffusion
GDL hydrophobic treatment
Humidification
Humidity
Hydration
Mass transfer
Maximum power density
membrane thickness
microporous layer
Moisture content
PEM fuel cells
Spectroscopic analysis
Spectrum analysis
Studies
Thickness
Water
Water flooding
title Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20on%20the%20membrane%20electrode%20assembly%20of%20a%20proton%20exchange%20membrane%20fuel%20cell:%20effects%20of%20microporous%20layer,%20membrane%20thickness%20and%20gas%20diffusion%20layer%20hydrophobic%20treatment&rft.jtitle=Electrochimica%20acta&rft.au=Ferreira,%20Rui%20B.&rft.date=2017-01-10&rft.volume=224&rft.spage=337&rft.epage=345&rft.pages=337-345&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2016.12.074&rft_dat=%3Cproquest_cross%3E1932120422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932120422&rft_id=info:pmid/&rft_els_id=S0013468616326214&rfr_iscdi=true