Nonlinear asymptotic analysis of a system of two free coupled oscillators with cubic nonlinearities

In this paper a two degrees of freedom undamped nonlinear system of two unforced coupled oscillators with cubic nonlinearities is analyzed. Through a decoupling procedure and using admissible functional transformations it is proved that this system can be reduced to an intermediate second order nonl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2017-03, Vol.43, p.509-520
Hauptverfasser: Theotokoglou, E.E., Panayotounakos, D.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 520
container_issue
container_start_page 509
container_title Applied Mathematical Modelling
container_volume 43
creator Theotokoglou, E.E.
Panayotounakos, D.E.
description In this paper a two degrees of freedom undamped nonlinear system of two unforced coupled oscillators with cubic nonlinearities is analyzed. Through a decoupling procedure and using admissible functional transformations it is proved that this system can be reduced to an intermediate second order nonlinear ordinary differential equation (ODE) connecting both displacements to each other. By nonlinear asymptotic approximations the above equation can be further reduced to new nonlinear ODE that can be analytically solved. The solutions in the physical plane are extracted in parametric form. As generalization, the model of a damped system of two masses connected with stiffness with linear and nonlinear coefficient of rigidities respectively is analyzed and exact analytical solutions are extracted. Finally an application has been given in the case of a two mass system with cubic strong non-linearity.
doi_str_mv 10.1016/j.apm.2016.11.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932120390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932120390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d3e15f34cdf78990bd7b9c5f3b11fcd556c8d017b61a698503f5a399550037e63</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYMouK5-AG8Bz1tnNpt2c5TFfyB6UfAW0jTBlLapScrSb2-WVfA0b4Y3D96PkGuEAgHL27ZQY1-ssywQC8DNCVkAg2olYPN5-k-fk4sYWwDgeVsQ_eqHzg1GBari3I_JJ6epGlQ3Rxept1TROMdk-oNOe09tMIZqP42daaiP2nWdSj5Eunfpi-qpzv_DX6hLzsRLcmZVF83V71ySj4f7993T6uXt8Xl397LSDMu0aphBbtlGN7baCgF1U9VC50uNaHXDeam3DWBVl6hKseXALFdMCM4BWGVKtiQ3x9wx-O_JxCRbP4VcJUoUbI1rYAKyC48uHXyMwVg5BterMEsEeWApW5lZygNLiSgzS_YDwihpww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932120390</pqid></control><display><type>article</type><title>Nonlinear asymptotic analysis of a system of two free coupled oscillators with cubic nonlinearities</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>EBSCOhost Education Source</source><source>EBSCOhost Business Source Complete</source><creator>Theotokoglou, E.E. ; Panayotounakos, D.E.</creator><creatorcontrib>Theotokoglou, E.E. ; Panayotounakos, D.E.</creatorcontrib><description>In this paper a two degrees of freedom undamped nonlinear system of two unforced coupled oscillators with cubic nonlinearities is analyzed. Through a decoupling procedure and using admissible functional transformations it is proved that this system can be reduced to an intermediate second order nonlinear ordinary differential equation (ODE) connecting both displacements to each other. By nonlinear asymptotic approximations the above equation can be further reduced to new nonlinear ODE that can be analytically solved. The solutions in the physical plane are extracted in parametric form. As generalization, the model of a damped system of two masses connected with stiffness with linear and nonlinear coefficient of rigidities respectively is analyzed and exact analytical solutions are extracted. Finally an application has been given in the case of a two mass system with cubic strong non-linearity.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2016.11.014</identifier><language>eng</language><publisher>New York: Elsevier BV</publisher><subject>Asymptotic methods ; Decoupling ; Linearity ; Nonlinear analysis ; Nonlinear differential equations ; Nonlinear systems ; Nonlinearity ; Ordinary differential equations ; Oscillators ; Stiffness</subject><ispartof>Applied Mathematical Modelling, 2017-03, Vol.43, p.509-520</ispartof><rights>Copyright Elsevier BV Mar 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d3e15f34cdf78990bd7b9c5f3b11fcd556c8d017b61a698503f5a399550037e63</citedby><cites>FETCH-LOGICAL-c316t-d3e15f34cdf78990bd7b9c5f3b11fcd556c8d017b61a698503f5a399550037e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Theotokoglou, E.E.</creatorcontrib><creatorcontrib>Panayotounakos, D.E.</creatorcontrib><title>Nonlinear asymptotic analysis of a system of two free coupled oscillators with cubic nonlinearities</title><title>Applied Mathematical Modelling</title><description>In this paper a two degrees of freedom undamped nonlinear system of two unforced coupled oscillators with cubic nonlinearities is analyzed. Through a decoupling procedure and using admissible functional transformations it is proved that this system can be reduced to an intermediate second order nonlinear ordinary differential equation (ODE) connecting both displacements to each other. By nonlinear asymptotic approximations the above equation can be further reduced to new nonlinear ODE that can be analytically solved. The solutions in the physical plane are extracted in parametric form. As generalization, the model of a damped system of two masses connected with stiffness with linear and nonlinear coefficient of rigidities respectively is analyzed and exact analytical solutions are extracted. Finally an application has been given in the case of a two mass system with cubic strong non-linearity.</description><subject>Asymptotic methods</subject><subject>Decoupling</subject><subject>Linearity</subject><subject>Nonlinear analysis</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Ordinary differential equations</subject><subject>Oscillators</subject><subject>Stiffness</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LxDAQxYMouK5-AG8Bz1tnNpt2c5TFfyB6UfAW0jTBlLapScrSb2-WVfA0b4Y3D96PkGuEAgHL27ZQY1-ssywQC8DNCVkAg2olYPN5-k-fk4sYWwDgeVsQ_eqHzg1GBari3I_JJ6epGlQ3Rxept1TROMdk-oNOe09tMIZqP42daaiP2nWdSj5Eunfpi-qpzv_DX6hLzsRLcmZVF83V71ySj4f7993T6uXt8Xl397LSDMu0aphBbtlGN7baCgF1U9VC50uNaHXDeam3DWBVl6hKseXALFdMCM4BWGVKtiQ3x9wx-O_JxCRbP4VcJUoUbI1rYAKyC48uHXyMwVg5BterMEsEeWApW5lZygNLiSgzS_YDwihpww</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Theotokoglou, E.E.</creator><creator>Panayotounakos, D.E.</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201703</creationdate><title>Nonlinear asymptotic analysis of a system of two free coupled oscillators with cubic nonlinearities</title><author>Theotokoglou, E.E. ; Panayotounakos, D.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d3e15f34cdf78990bd7b9c5f3b11fcd556c8d017b61a698503f5a399550037e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic methods</topic><topic>Decoupling</topic><topic>Linearity</topic><topic>Nonlinear analysis</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Ordinary differential equations</topic><topic>Oscillators</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theotokoglou, E.E.</creatorcontrib><creatorcontrib>Panayotounakos, D.E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theotokoglou, E.E.</au><au>Panayotounakos, D.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear asymptotic analysis of a system of two free coupled oscillators with cubic nonlinearities</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2017-03</date><risdate>2017</risdate><volume>43</volume><spage>509</spage><epage>520</epage><pages>509-520</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>In this paper a two degrees of freedom undamped nonlinear system of two unforced coupled oscillators with cubic nonlinearities is analyzed. Through a decoupling procedure and using admissible functional transformations it is proved that this system can be reduced to an intermediate second order nonlinear ordinary differential equation (ODE) connecting both displacements to each other. By nonlinear asymptotic approximations the above equation can be further reduced to new nonlinear ODE that can be analytically solved. The solutions in the physical plane are extracted in parametric form. As generalization, the model of a damped system of two masses connected with stiffness with linear and nonlinear coefficient of rigidities respectively is analyzed and exact analytical solutions are extracted. Finally an application has been given in the case of a two mass system with cubic strong non-linearity.</abstract><cop>New York</cop><pub>Elsevier BV</pub><doi>10.1016/j.apm.2016.11.014</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2017-03, Vol.43, p.509-520
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_1932120390
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; EBSCOhost Education Source; EBSCOhost Business Source Complete
subjects Asymptotic methods
Decoupling
Linearity
Nonlinear analysis
Nonlinear differential equations
Nonlinear systems
Nonlinearity
Ordinary differential equations
Oscillators
Stiffness
title Nonlinear asymptotic analysis of a system of two free coupled oscillators with cubic nonlinearities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20asymptotic%20analysis%20of%20a%20system%20of%20two%20free%20coupled%20oscillators%20with%20cubic%20nonlinearities&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Theotokoglou,%20E.E.&rft.date=2017-03&rft.volume=43&rft.spage=509&rft.epage=520&rft.pages=509-520&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2016.11.014&rft_dat=%3Cproquest_cross%3E1932120390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932120390&rft_id=info:pmid/&rfr_iscdi=true