Fuzzy multi-criteria acceptability analysis: A new approach to multi-criteria decision analysis under fuzzy environment

•New MCDA approach under fuzzy contexts implements acceptability analysis concept.•Fuzzy Rank Acceptability Analysis gives a ranking and a confidence degree about it.•A fuzzy extension of MAVT method within the FMAA is implemented.•The study of the overestimation problem with fuzzy arithmetic is stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2017-10, Vol.84, p.262-271
Hauptverfasser: Yatsalo, Boris, Korobov, Alexander, Martínez, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue
container_start_page 262
container_title Expert systems with applications
container_volume 84
creator Yatsalo, Boris
Korobov, Alexander
Martínez, L.
description •New MCDA approach under fuzzy contexts implements acceptability analysis concept.•Fuzzy Rank Acceptability Analysis gives a ranking and a confidence degree about it.•A fuzzy extension of MAVT method within the FMAA is implemented.•The study of the overestimation problem with fuzzy arithmetic is studied and fixed. Uncertainty is one of the main difficulties that increases the complexity of multi-criteria decision analysis (MCDA) problems, and often uncertainty cannot be managed by probabilistic models. In such cases, the use of fuzzy methods has been successfully applied to multi-criteria decision methods in which the ranking of fuzzy quantities is crucial for the decision analysis. This paper aims to introduce a new approach to MCDA problems defined under fuzzy contexts that implements the concept of acceptability analysis, Fuzzy Multi-Criteria Acceptability Analysis (FMAA), based on the Fuzzy Rank Acceptability Analysis (FRAA), that provides a ranking and a confidence degree about the ranking of fuzzy quantities. Based on the fuzzy extension of MAVT method, the FMAA is implemented and then applied to a case study, and its results are compared with other well-known MCDA methods in order to show its validity, interpretability and consistency.
doi_str_mv 10.1016/j.eswa.2017.05.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932117876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417417303214</els_id><sourcerecordid>1932117876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-8f6ce562569fc8aa5e20c1130e86ce768f74b98342bfba4915bc0e95b53b98a73</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKd_wFPAc2vSNE0rXsZwKgy86Dmk6VdM6dKapBvz15s58eDBU-DL-3zfy4PQNSUpJbS47VLwO5VmhIqU8JQQfoJmtBQsKUTFTtGMVFwkORX5ObrwviMxSIiYod1q-vzc483UB5NoZwI4o7DSGsagatObsMfKqn7vjb_DC2xhh9U4ukHpdxyGv2AD2ngz2F8GT7YBh9vvK2C3xg12AzZcorNW9R6uft45els9vC6fkvXL4_NysU40E0VIyrbQwIuMF1WrS6U4ZERTygiU8UMUZSvyuipZntVtrfKK8loTqHjNWRwrwebo5rg3Vv6YwAfZDZOL5bykFcsoFaUoYio7prQbvHfQytGZjXJ7SYk8CJadPAiWB8GScBkFR-j-CEHsvzXgpNcGrIbGONBBNoP5D_8C4dqHLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932117876</pqid></control><display><type>article</type><title>Fuzzy multi-criteria acceptability analysis: A new approach to multi-criteria decision analysis under fuzzy environment</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yatsalo, Boris ; Korobov, Alexander ; Martínez, L.</creator><creatorcontrib>Yatsalo, Boris ; Korobov, Alexander ; Martínez, L.</creatorcontrib><description>•New MCDA approach under fuzzy contexts implements acceptability analysis concept.•Fuzzy Rank Acceptability Analysis gives a ranking and a confidence degree about it.•A fuzzy extension of MAVT method within the FMAA is implemented.•The study of the overestimation problem with fuzzy arithmetic is studied and fixed. Uncertainty is one of the main difficulties that increases the complexity of multi-criteria decision analysis (MCDA) problems, and often uncertainty cannot be managed by probabilistic models. In such cases, the use of fuzzy methods has been successfully applied to multi-criteria decision methods in which the ranking of fuzzy quantities is crucial for the decision analysis. This paper aims to introduce a new approach to MCDA problems defined under fuzzy contexts that implements the concept of acceptability analysis, Fuzzy Multi-Criteria Acceptability Analysis (FMAA), based on the Fuzzy Rank Acceptability Analysis (FRAA), that provides a ranking and a confidence degree about the ranking of fuzzy quantities. Based on the fuzzy extension of MAVT method, the FMAA is implemented and then applied to a case study, and its results are compared with other well-known MCDA methods in order to show its validity, interpretability and consistency.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2017.05.005</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Acceptability ; Decision analysis ; Fuzzy logic ; Fuzzy sets ; MAVT ; Multi-criteria decision analysis ; Multiple criteria decision making ; Multiple criterion ; Ranking ; Ranking fuzzy numbers ; Uncertainty</subject><ispartof>Expert systems with applications, 2017-10, Vol.84, p.262-271</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 30, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-8f6ce562569fc8aa5e20c1130e86ce768f74b98342bfba4915bc0e95b53b98a73</citedby><cites>FETCH-LOGICAL-c376t-8f6ce562569fc8aa5e20c1130e86ce768f74b98342bfba4915bc0e95b53b98a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2017.05.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yatsalo, Boris</creatorcontrib><creatorcontrib>Korobov, Alexander</creatorcontrib><creatorcontrib>Martínez, L.</creatorcontrib><title>Fuzzy multi-criteria acceptability analysis: A new approach to multi-criteria decision analysis under fuzzy environment</title><title>Expert systems with applications</title><description>•New MCDA approach under fuzzy contexts implements acceptability analysis concept.•Fuzzy Rank Acceptability Analysis gives a ranking and a confidence degree about it.•A fuzzy extension of MAVT method within the FMAA is implemented.•The study of the overestimation problem with fuzzy arithmetic is studied and fixed. Uncertainty is one of the main difficulties that increases the complexity of multi-criteria decision analysis (MCDA) problems, and often uncertainty cannot be managed by probabilistic models. In such cases, the use of fuzzy methods has been successfully applied to multi-criteria decision methods in which the ranking of fuzzy quantities is crucial for the decision analysis. This paper aims to introduce a new approach to MCDA problems defined under fuzzy contexts that implements the concept of acceptability analysis, Fuzzy Multi-Criteria Acceptability Analysis (FMAA), based on the Fuzzy Rank Acceptability Analysis (FRAA), that provides a ranking and a confidence degree about the ranking of fuzzy quantities. Based on the fuzzy extension of MAVT method, the FMAA is implemented and then applied to a case study, and its results are compared with other well-known MCDA methods in order to show its validity, interpretability and consistency.</description><subject>Acceptability</subject><subject>Decision analysis</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>MAVT</subject><subject>Multi-criteria decision analysis</subject><subject>Multiple criteria decision making</subject><subject>Multiple criterion</subject><subject>Ranking</subject><subject>Ranking fuzzy numbers</subject><subject>Uncertainty</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYhoMoOKd_wFPAc2vSNE0rXsZwKgy86Dmk6VdM6dKapBvz15s58eDBU-DL-3zfy4PQNSUpJbS47VLwO5VmhIqU8JQQfoJmtBQsKUTFTtGMVFwkORX5ObrwviMxSIiYod1q-vzc483UB5NoZwI4o7DSGsagatObsMfKqn7vjb_DC2xhh9U4ukHpdxyGv2AD2ngz2F8GT7YBh9vvK2C3xg12AzZcorNW9R6uft45els9vC6fkvXL4_NysU40E0VIyrbQwIuMF1WrS6U4ZERTygiU8UMUZSvyuipZntVtrfKK8loTqHjNWRwrwebo5rg3Vv6YwAfZDZOL5bykFcsoFaUoYio7prQbvHfQytGZjXJ7SYk8CJadPAiWB8GScBkFR-j-CEHsvzXgpNcGrIbGONBBNoP5D_8C4dqHLQ</recordid><startdate>20171030</startdate><enddate>20171030</enddate><creator>Yatsalo, Boris</creator><creator>Korobov, Alexander</creator><creator>Martínez, L.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171030</creationdate><title>Fuzzy multi-criteria acceptability analysis: A new approach to multi-criteria decision analysis under fuzzy environment</title><author>Yatsalo, Boris ; Korobov, Alexander ; Martínez, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-8f6ce562569fc8aa5e20c1130e86ce768f74b98342bfba4915bc0e95b53b98a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceptability</topic><topic>Decision analysis</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>MAVT</topic><topic>Multi-criteria decision analysis</topic><topic>Multiple criteria decision making</topic><topic>Multiple criterion</topic><topic>Ranking</topic><topic>Ranking fuzzy numbers</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yatsalo, Boris</creatorcontrib><creatorcontrib>Korobov, Alexander</creatorcontrib><creatorcontrib>Martínez, L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yatsalo, Boris</au><au>Korobov, Alexander</au><au>Martínez, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy multi-criteria acceptability analysis: A new approach to multi-criteria decision analysis under fuzzy environment</atitle><jtitle>Expert systems with applications</jtitle><date>2017-10-30</date><risdate>2017</risdate><volume>84</volume><spage>262</spage><epage>271</epage><pages>262-271</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•New MCDA approach under fuzzy contexts implements acceptability analysis concept.•Fuzzy Rank Acceptability Analysis gives a ranking and a confidence degree about it.•A fuzzy extension of MAVT method within the FMAA is implemented.•The study of the overestimation problem with fuzzy arithmetic is studied and fixed. Uncertainty is one of the main difficulties that increases the complexity of multi-criteria decision analysis (MCDA) problems, and often uncertainty cannot be managed by probabilistic models. In such cases, the use of fuzzy methods has been successfully applied to multi-criteria decision methods in which the ranking of fuzzy quantities is crucial for the decision analysis. This paper aims to introduce a new approach to MCDA problems defined under fuzzy contexts that implements the concept of acceptability analysis, Fuzzy Multi-Criteria Acceptability Analysis (FMAA), based on the Fuzzy Rank Acceptability Analysis (FRAA), that provides a ranking and a confidence degree about the ranking of fuzzy quantities. Based on the fuzzy extension of MAVT method, the FMAA is implemented and then applied to a case study, and its results are compared with other well-known MCDA methods in order to show its validity, interpretability and consistency.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2017.05.005</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2017-10, Vol.84, p.262-271
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_1932117876
source Elsevier ScienceDirect Journals Complete
subjects Acceptability
Decision analysis
Fuzzy logic
Fuzzy sets
MAVT
Multi-criteria decision analysis
Multiple criteria decision making
Multiple criterion
Ranking
Ranking fuzzy numbers
Uncertainty
title Fuzzy multi-criteria acceptability analysis: A new approach to multi-criteria decision analysis under fuzzy environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20multi-criteria%20acceptability%20analysis:%20A%20new%20approach%20to%20multi-criteria%20decision%20analysis%20under%20fuzzy%20environment&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Yatsalo,%20Boris&rft.date=2017-10-30&rft.volume=84&rft.spage=262&rft.epage=271&rft.pages=262-271&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2017.05.005&rft_dat=%3Cproquest_cross%3E1932117876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932117876&rft_id=info:pmid/&rft_els_id=S0957417417303214&rfr_iscdi=true