Zero forcing propagation time on oriented graphs
Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue....
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2017-06, Vol.224, p.45-59 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | |
container_start_page | 45 |
container_title | Discrete Applied Mathematics |
container_volume | 224 |
creator | Berliner, Adam Bozeman, Chassidy Butler, Steve Catral, Minerva Hogben, Leslie Kroschel, Brenda Lin, Jephian C.-H. Warnberg, Nathan Young, Michael |
description | Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue. An initial set of blue vertices that can force the entire graph to blue is called a zero forcing set. In this paper we consider the minimum number of iterations needed for this color change rule to color all of the vertices blue, also known as the propagation time, for oriented graphs. We produce oriented graphs with both high and low propagation times, consider the possible propagation times for the orientations of a fixed graph, and look at balancing the size of a zero forcing set and the propagation time. |
doi_str_mv | 10.1016/j.dam.2017.02.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932043811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X17301038</els_id><sourcerecordid>1932043811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-7d389a1a84bb7601be14505bc4350855ce748582b9403209260b1f525b30bb9c3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Fz60zSdOkeJLFf7DgRUG8hCRN1xS3qUlX8NubZT17egy838ybR8glQoWAzfVQdXpbUUBRAa2yHJEFSkHLRgg8JovsaUqK8u2UnKU0AADmaUHg3cVQ9CFaP26KKYZJb_Tsw1jMfuuKrCF6N86uKzZRTx_pnJz0-jO5iz9dktf7u5fVY7l-fnha3a5Lyxo5l6JjstWoZW2MaACNw5oDN7ZmHCTn1olacklNWwOj0NIGDPaccsPAmNayJbk67M2ZvnYuzWoIuzjmkwrbTNRMImYXHlw2hpSi69UU_VbHH4Wg9sWoQeVi1L4YBVRlyczNgXE5_rd3USWbX7Su89HZWXXB_0P_AgXxaNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932043811</pqid></control><display><type>article</type><title>Zero forcing propagation time on oriented graphs</title><source>Elsevier ScienceDirect Journals Complete</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Berliner, Adam ; Bozeman, Chassidy ; Butler, Steve ; Catral, Minerva ; Hogben, Leslie ; Kroschel, Brenda ; Lin, Jephian C.-H. ; Warnberg, Nathan ; Young, Michael</creator><creatorcontrib>Berliner, Adam ; Bozeman, Chassidy ; Butler, Steve ; Catral, Minerva ; Hogben, Leslie ; Kroschel, Brenda ; Lin, Jephian C.-H. ; Warnberg, Nathan ; Young, Michael</creatorcontrib><description>Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue. An initial set of blue vertices that can force the entire graph to blue is called a zero forcing set. In this paper we consider the minimum number of iterations needed for this color change rule to color all of the vertices blue, also known as the propagation time, for oriented graphs. We produce oriented graphs with both high and low propagation times, consider the possible propagation times for the orientations of a fixed graph, and look at balancing the size of a zero forcing set and the propagation time.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2017.02.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Color ; Coloring ; Graph coloring ; Graph theory ; Graphs ; Hessenberg path ; Oriented graphs ; Propagation ; Propagation time ; Throttling ; Zero forcing process</subject><ispartof>Discrete Applied Mathematics, 2017-06, Vol.224, p.45-59</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 19, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-7d389a1a84bb7601be14505bc4350855ce748582b9403209260b1f525b30bb9c3</citedby><cites>FETCH-LOGICAL-c368t-7d389a1a84bb7601be14505bc4350855ce748582b9403209260b1f525b30bb9c3</cites><orcidid>0000-0003-1673-3789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2017.02.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Berliner, Adam</creatorcontrib><creatorcontrib>Bozeman, Chassidy</creatorcontrib><creatorcontrib>Butler, Steve</creatorcontrib><creatorcontrib>Catral, Minerva</creatorcontrib><creatorcontrib>Hogben, Leslie</creatorcontrib><creatorcontrib>Kroschel, Brenda</creatorcontrib><creatorcontrib>Lin, Jephian C.-H.</creatorcontrib><creatorcontrib>Warnberg, Nathan</creatorcontrib><creatorcontrib>Young, Michael</creatorcontrib><title>Zero forcing propagation time on oriented graphs</title><title>Discrete Applied Mathematics</title><description>Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue. An initial set of blue vertices that can force the entire graph to blue is called a zero forcing set. In this paper we consider the minimum number of iterations needed for this color change rule to color all of the vertices blue, also known as the propagation time, for oriented graphs. We produce oriented graphs with both high and low propagation times, consider the possible propagation times for the orientations of a fixed graph, and look at balancing the size of a zero forcing set and the propagation time.</description><subject>Color</subject><subject>Coloring</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Hessenberg path</subject><subject>Oriented graphs</subject><subject>Propagation</subject><subject>Propagation time</subject><subject>Throttling</subject><subject>Zero forcing process</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Fz60zSdOkeJLFf7DgRUG8hCRN1xS3qUlX8NubZT17egy838ybR8glQoWAzfVQdXpbUUBRAa2yHJEFSkHLRgg8JovsaUqK8u2UnKU0AADmaUHg3cVQ9CFaP26KKYZJb_Tsw1jMfuuKrCF6N86uKzZRTx_pnJz0-jO5iz9dktf7u5fVY7l-fnha3a5Lyxo5l6JjstWoZW2MaACNw5oDN7ZmHCTn1olacklNWwOj0NIGDPaccsPAmNayJbk67M2ZvnYuzWoIuzjmkwrbTNRMImYXHlw2hpSi69UU_VbHH4Wg9sWoQeVi1L4YBVRlyczNgXE5_rd3USWbX7Su89HZWXXB_0P_AgXxaNo</recordid><startdate>20170619</startdate><enddate>20170619</enddate><creator>Berliner, Adam</creator><creator>Bozeman, Chassidy</creator><creator>Butler, Steve</creator><creator>Catral, Minerva</creator><creator>Hogben, Leslie</creator><creator>Kroschel, Brenda</creator><creator>Lin, Jephian C.-H.</creator><creator>Warnberg, Nathan</creator><creator>Young, Michael</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1673-3789</orcidid></search><sort><creationdate>20170619</creationdate><title>Zero forcing propagation time on oriented graphs</title><author>Berliner, Adam ; Bozeman, Chassidy ; Butler, Steve ; Catral, Minerva ; Hogben, Leslie ; Kroschel, Brenda ; Lin, Jephian C.-H. ; Warnberg, Nathan ; Young, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-7d389a1a84bb7601be14505bc4350855ce748582b9403209260b1f525b30bb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Color</topic><topic>Coloring</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Hessenberg path</topic><topic>Oriented graphs</topic><topic>Propagation</topic><topic>Propagation time</topic><topic>Throttling</topic><topic>Zero forcing process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berliner, Adam</creatorcontrib><creatorcontrib>Bozeman, Chassidy</creatorcontrib><creatorcontrib>Butler, Steve</creatorcontrib><creatorcontrib>Catral, Minerva</creatorcontrib><creatorcontrib>Hogben, Leslie</creatorcontrib><creatorcontrib>Kroschel, Brenda</creatorcontrib><creatorcontrib>Lin, Jephian C.-H.</creatorcontrib><creatorcontrib>Warnberg, Nathan</creatorcontrib><creatorcontrib>Young, Michael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berliner, Adam</au><au>Bozeman, Chassidy</au><au>Butler, Steve</au><au>Catral, Minerva</au><au>Hogben, Leslie</au><au>Kroschel, Brenda</au><au>Lin, Jephian C.-H.</au><au>Warnberg, Nathan</au><au>Young, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero forcing propagation time on oriented graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2017-06-19</date><risdate>2017</risdate><volume>224</volume><spage>45</spage><epage>59</epage><pages>45-59</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue. An initial set of blue vertices that can force the entire graph to blue is called a zero forcing set. In this paper we consider the minimum number of iterations needed for this color change rule to color all of the vertices blue, also known as the propagation time, for oriented graphs. We produce oriented graphs with both high and low propagation times, consider the possible propagation times for the orientations of a fixed graph, and look at balancing the size of a zero forcing set and the propagation time.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2017.02.017</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1673-3789</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2017-06, Vol.224, p.45-59 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_1932043811 |
source | Elsevier ScienceDirect Journals Complete; Free E-Journal (出版社公開部分のみ) |
subjects | Color Coloring Graph coloring Graph theory Graphs Hessenberg path Oriented graphs Propagation Propagation time Throttling Zero forcing process |
title | Zero forcing propagation time on oriented graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero%20forcing%20propagation%20time%20on%20oriented%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Berliner,%20Adam&rft.date=2017-06-19&rft.volume=224&rft.spage=45&rft.epage=59&rft.pages=45-59&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2017.02.017&rft_dat=%3Cproquest_cross%3E1932043811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932043811&rft_id=info:pmid/&rft_els_id=S0166218X17301038&rfr_iscdi=true |