Zero forcing propagation time on oriented graphs

Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2017-06, Vol.224, p.45-59
Hauptverfasser: Berliner, Adam, Bozeman, Chassidy, Butler, Steve, Catral, Minerva, Hogben, Leslie, Kroschel, Brenda, Lin, Jephian C.-H., Warnberg, Nathan, Young, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue
container_start_page 45
container_title Discrete Applied Mathematics
container_volume 224
creator Berliner, Adam
Bozeman, Chassidy
Butler, Steve
Catral, Minerva
Hogben, Leslie
Kroschel, Brenda
Lin, Jephian C.-H.
Warnberg, Nathan
Young, Michael
description Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue. An initial set of blue vertices that can force the entire graph to blue is called a zero forcing set. In this paper we consider the minimum number of iterations needed for this color change rule to color all of the vertices blue, also known as the propagation time, for oriented graphs. We produce oriented graphs with both high and low propagation times, consider the possible propagation times for the orientations of a fixed graph, and look at balancing the size of a zero forcing set and the propagation time.
doi_str_mv 10.1016/j.dam.2017.02.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932043811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X17301038</els_id><sourcerecordid>1932043811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-7d389a1a84bb7601be14505bc4350855ce748582b9403209260b1f525b30bb9c3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Fz60zSdOkeJLFf7DgRUG8hCRN1xS3qUlX8NubZT17egy838ybR8glQoWAzfVQdXpbUUBRAa2yHJEFSkHLRgg8JovsaUqK8u2UnKU0AADmaUHg3cVQ9CFaP26KKYZJb_Tsw1jMfuuKrCF6N86uKzZRTx_pnJz0-jO5iz9dktf7u5fVY7l-fnha3a5Lyxo5l6JjstWoZW2MaACNw5oDN7ZmHCTn1olacklNWwOj0NIGDPaccsPAmNayJbk67M2ZvnYuzWoIuzjmkwrbTNRMImYXHlw2hpSi69UU_VbHH4Wg9sWoQeVi1L4YBVRlyczNgXE5_rd3USWbX7Su89HZWXXB_0P_AgXxaNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932043811</pqid></control><display><type>article</type><title>Zero forcing propagation time on oriented graphs</title><source>Elsevier ScienceDirect Journals Complete</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Berliner, Adam ; Bozeman, Chassidy ; Butler, Steve ; Catral, Minerva ; Hogben, Leslie ; Kroschel, Brenda ; Lin, Jephian C.-H. ; Warnberg, Nathan ; Young, Michael</creator><creatorcontrib>Berliner, Adam ; Bozeman, Chassidy ; Butler, Steve ; Catral, Minerva ; Hogben, Leslie ; Kroschel, Brenda ; Lin, Jephian C.-H. ; Warnberg, Nathan ; Young, Michael</creatorcontrib><description>Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue. An initial set of blue vertices that can force the entire graph to blue is called a zero forcing set. In this paper we consider the minimum number of iterations needed for this color change rule to color all of the vertices blue, also known as the propagation time, for oriented graphs. We produce oriented graphs with both high and low propagation times, consider the possible propagation times for the orientations of a fixed graph, and look at balancing the size of a zero forcing set and the propagation time.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2017.02.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Color ; Coloring ; Graph coloring ; Graph theory ; Graphs ; Hessenberg path ; Oriented graphs ; Propagation ; Propagation time ; Throttling ; Zero forcing process</subject><ispartof>Discrete Applied Mathematics, 2017-06, Vol.224, p.45-59</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 19, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-7d389a1a84bb7601be14505bc4350855ce748582b9403209260b1f525b30bb9c3</citedby><cites>FETCH-LOGICAL-c368t-7d389a1a84bb7601be14505bc4350855ce748582b9403209260b1f525b30bb9c3</cites><orcidid>0000-0003-1673-3789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2017.02.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Berliner, Adam</creatorcontrib><creatorcontrib>Bozeman, Chassidy</creatorcontrib><creatorcontrib>Butler, Steve</creatorcontrib><creatorcontrib>Catral, Minerva</creatorcontrib><creatorcontrib>Hogben, Leslie</creatorcontrib><creatorcontrib>Kroschel, Brenda</creatorcontrib><creatorcontrib>Lin, Jephian C.-H.</creatorcontrib><creatorcontrib>Warnberg, Nathan</creatorcontrib><creatorcontrib>Young, Michael</creatorcontrib><title>Zero forcing propagation time on oriented graphs</title><title>Discrete Applied Mathematics</title><description>Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue. An initial set of blue vertices that can force the entire graph to blue is called a zero forcing set. In this paper we consider the minimum number of iterations needed for this color change rule to color all of the vertices blue, also known as the propagation time, for oriented graphs. We produce oriented graphs with both high and low propagation times, consider the possible propagation times for the orientations of a fixed graph, and look at balancing the size of a zero forcing set and the propagation time.</description><subject>Color</subject><subject>Coloring</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Hessenberg path</subject><subject>Oriented graphs</subject><subject>Propagation</subject><subject>Propagation time</subject><subject>Throttling</subject><subject>Zero forcing process</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Fz60zSdOkeJLFf7DgRUG8hCRN1xS3qUlX8NubZT17egy838ybR8glQoWAzfVQdXpbUUBRAa2yHJEFSkHLRgg8JovsaUqK8u2UnKU0AADmaUHg3cVQ9CFaP26KKYZJb_Tsw1jMfuuKrCF6N86uKzZRTx_pnJz0-jO5iz9dktf7u5fVY7l-fnha3a5Lyxo5l6JjstWoZW2MaACNw5oDN7ZmHCTn1olacklNWwOj0NIGDPaccsPAmNayJbk67M2ZvnYuzWoIuzjmkwrbTNRMImYXHlw2hpSi69UU_VbHH4Wg9sWoQeVi1L4YBVRlyczNgXE5_rd3USWbX7Su89HZWXXB_0P_AgXxaNo</recordid><startdate>20170619</startdate><enddate>20170619</enddate><creator>Berliner, Adam</creator><creator>Bozeman, Chassidy</creator><creator>Butler, Steve</creator><creator>Catral, Minerva</creator><creator>Hogben, Leslie</creator><creator>Kroschel, Brenda</creator><creator>Lin, Jephian C.-H.</creator><creator>Warnberg, Nathan</creator><creator>Young, Michael</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1673-3789</orcidid></search><sort><creationdate>20170619</creationdate><title>Zero forcing propagation time on oriented graphs</title><author>Berliner, Adam ; Bozeman, Chassidy ; Butler, Steve ; Catral, Minerva ; Hogben, Leslie ; Kroschel, Brenda ; Lin, Jephian C.-H. ; Warnberg, Nathan ; Young, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-7d389a1a84bb7601be14505bc4350855ce748582b9403209260b1f525b30bb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Color</topic><topic>Coloring</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Hessenberg path</topic><topic>Oriented graphs</topic><topic>Propagation</topic><topic>Propagation time</topic><topic>Throttling</topic><topic>Zero forcing process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berliner, Adam</creatorcontrib><creatorcontrib>Bozeman, Chassidy</creatorcontrib><creatorcontrib>Butler, Steve</creatorcontrib><creatorcontrib>Catral, Minerva</creatorcontrib><creatorcontrib>Hogben, Leslie</creatorcontrib><creatorcontrib>Kroschel, Brenda</creatorcontrib><creatorcontrib>Lin, Jephian C.-H.</creatorcontrib><creatorcontrib>Warnberg, Nathan</creatorcontrib><creatorcontrib>Young, Michael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berliner, Adam</au><au>Bozeman, Chassidy</au><au>Butler, Steve</au><au>Catral, Minerva</au><au>Hogben, Leslie</au><au>Kroschel, Brenda</au><au>Lin, Jephian C.-H.</au><au>Warnberg, Nathan</au><au>Young, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero forcing propagation time on oriented graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2017-06-19</date><risdate>2017</risdate><volume>224</volume><spage>45</spage><epage>59</epage><pages>45-59</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue. An initial set of blue vertices that can force the entire graph to blue is called a zero forcing set. In this paper we consider the minimum number of iterations needed for this color change rule to color all of the vertices blue, also known as the propagation time, for oriented graphs. We produce oriented graphs with both high and low propagation times, consider the possible propagation times for the orientations of a fixed graph, and look at balancing the size of a zero forcing set and the propagation time.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2017.02.017</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1673-3789</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2017-06, Vol.224, p.45-59
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_1932043811
source Elsevier ScienceDirect Journals Complete; Free E-Journal (出版社公開部分のみ)
subjects Color
Coloring
Graph coloring
Graph theory
Graphs
Hessenberg path
Oriented graphs
Propagation
Propagation time
Throttling
Zero forcing process
title Zero forcing propagation time on oriented graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero%20forcing%20propagation%20time%20on%20oriented%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Berliner,%20Adam&rft.date=2017-06-19&rft.volume=224&rft.spage=45&rft.epage=59&rft.pages=45-59&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2017.02.017&rft_dat=%3Cproquest_cross%3E1932043811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932043811&rft_id=info:pmid/&rft_els_id=S0166218X17301038&rfr_iscdi=true