A Computational Approach for the Solution of A Class of Variable-Order Fractional Integro-Differential Equations With Weakly Singular Kernels
A new computational approach for approximating of variable-order fractional derivatives is proposed. The technique is based on piecewise cubic spline interpolation. The method is extended to a class of nonlinear variable-order fractional integro-differential equation with weakly singular kernels. Il...
Gespeichert in:
Veröffentlicht in: | Fractional calculus & applied analysis 2017-08, Vol.20 (4), p.1023-1042 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new computational approach for approximating of variable-order fractional derivatives is proposed. The technique is based on piecewise cubic spline interpolation. The method is extended to a class of nonlinear variable-order fractional integro-differential equation with weakly singular kernels. Illustrative examples are discussed, demonstrating the performance of the numerical scheme. |
---|---|
ISSN: | 1311-0454 1314-2224 |
DOI: | 10.1515/fca-2017-0053 |