Estimation of optimal dispersion model source parameters using satellite detections of volcanic ash

In this paper we demonstrate how parameters describing the geometry of the volcanic ash source for a particular volcanic ash dispersion model (Hybrid Single‐Particle Lagrangian Integrated Trajectory (HYSPLIT)) may be inferred by the use of satellite data and multiple trial simulations. The areas of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2017-08, Vol.122 (15), p.8207-8232
Hauptverfasser: Zidikheri, Meelis J., Lucas, Christopher, Potts, Rodney J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8232
container_issue 15
container_start_page 8207
container_title Journal of geophysical research. Atmospheres
container_volume 122
creator Zidikheri, Meelis J.
Lucas, Christopher
Potts, Rodney J.
description In this paper we demonstrate how parameters describing the geometry of the volcanic ash source for a particular volcanic ash dispersion model (Hybrid Single‐Particle Lagrangian Integrated Trajectory (HYSPLIT)) may be inferred by the use of satellite data and multiple trial simulations. The areas of space likely to be contaminated by ash are identified with the aid of various remote sensing techniques, and polygons are drawn around these areas as they would be in an operational setting. Dispersion model simulations are initialized by either a cylindrical source or a specified ash distribution depending on the context. Parameters of interest such as the base and top height, diameter, and optimal release time of the cylindrical source or the height of the specified ash distribution are inferred by forming a parameter grid and running multiple simulations for each parameter grid point value. Optimal values of the parameter values are identified by calculating spatial correlations between the model simulations and observations. We demonstrate that the methodology can be used to correctly infer various model parameters and improve volcanic ash forecasts in various eruption case studies. Plain Language Summary Airborne volcanic ash is a hazard to aviation. Accurate forecasts of airspace likely to be contaminated by ash are therefore crucial for effective risk management. In this paper we show how information about the location of ash‐contaminated areas at times prior to the issuance of the latest forecast can be used to estimate various model parameters that are not easily obtained by other means such as the height of the ash column at the volcano. This in turn leads to better forecasts of ash transport. We demonstrate the efficacy of this approach using several case studies. Key Points Ash detection fields constructed from a variety of sources, including human input, are a reliable source of information about volcanic ash Ash detections can be used to infer important dispersion model parameters such as ash column height Use of optimal dispersion model parameters as obtained from the detection field leads to better forecasts and therefore improved guidance
doi_str_mv 10.1002/2017JD026676
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931794698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931794698</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3733-267b5f55ca83707347b2b29022e3ef139ebcd8923c0222ba93fb2f15205cfe733</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWGp3PkDAraP5mSSTpbS1WgRBFNyFTCbRlOlkTKZK394MFXHl3eTm5OPckwvAOUZXGCFyTRAW6wUinAt-BCYEc1lUUvLj3168noJZShuUq0K0ZOUEmGUa_FYPPnQwOBj68dbCxqfexjSq29DYFqawi8bCXke9tUN-grvkuzeY9GDb1g8WNlk2o08ajT5Da3TnDdTp_QycON0mO_s5p-Dldvk8vyseHlf385uHQlNBaUG4qJljzOiKCiRoKWpSE4kIsdQ6TKWtTVNJQk2WSK0ldTVxmBHEjLPZYQouDr59DB87mwa1yam7PFJhSbGQJZdVpi4PlIkhpWid6mP-c9wrjNS4SfV3kxmnB_zLt3b_L6vWq6cFozJH-QZs6nU-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931794698</pqid></control><display><type>article</type><title>Estimation of optimal dispersion model source parameters using satellite detections of volcanic ash</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Zidikheri, Meelis J. ; Lucas, Christopher ; Potts, Rodney J.</creator><creatorcontrib>Zidikheri, Meelis J. ; Lucas, Christopher ; Potts, Rodney J.</creatorcontrib><description>In this paper we demonstrate how parameters describing the geometry of the volcanic ash source for a particular volcanic ash dispersion model (Hybrid Single‐Particle Lagrangian Integrated Trajectory (HYSPLIT)) may be inferred by the use of satellite data and multiple trial simulations. The areas of space likely to be contaminated by ash are identified with the aid of various remote sensing techniques, and polygons are drawn around these areas as they would be in an operational setting. Dispersion model simulations are initialized by either a cylindrical source or a specified ash distribution depending on the context. Parameters of interest such as the base and top height, diameter, and optimal release time of the cylindrical source or the height of the specified ash distribution are inferred by forming a parameter grid and running multiple simulations for each parameter grid point value. Optimal values of the parameter values are identified by calculating spatial correlations between the model simulations and observations. We demonstrate that the methodology can be used to correctly infer various model parameters and improve volcanic ash forecasts in various eruption case studies. Plain Language Summary Airborne volcanic ash is a hazard to aviation. Accurate forecasts of airspace likely to be contaminated by ash are therefore crucial for effective risk management. In this paper we show how information about the location of ash‐contaminated areas at times prior to the issuance of the latest forecast can be used to estimate various model parameters that are not easily obtained by other means such as the height of the ash column at the volcano. This in turn leads to better forecasts of ash transport. We demonstrate the efficacy of this approach using several case studies. Key Points Ash detection fields constructed from a variety of sources, including human input, are a reliable source of information about volcanic ash Ash detections can be used to infer important dispersion model parameters such as ash column height Use of optimal dispersion model parameters as obtained from the detection field leads to better forecasts and therefore improved guidance</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2017JD026676</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Airspace ; ash ; Aviation ; Case studies ; Computer simulation ; Contamination ; data assimilation ; Detection ; Dispersion ; Dispersions ; Distribution ; Geophysics ; Height ; Identification ; inverse modeling ; Mathematical models ; modeling ; Parameter estimation ; Parameters ; Polygons ; Remote sensing ; Remote sensing techniques ; Risk management ; Satellite data ; Satellites ; Sensing techniques ; Simulation ; Volcanic activity ; Volcanic ash ; volcano ; Volcanoes</subject><ispartof>Journal of geophysical research. Atmospheres, 2017-08, Vol.122 (15), p.8207-8232</ispartof><rights>2017. Australian Bureau of Meteorology, Commonwealth of Australia.</rights><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3733-267b5f55ca83707347b2b29022e3ef139ebcd8923c0222ba93fb2f15205cfe733</citedby><cites>FETCH-LOGICAL-a3733-267b5f55ca83707347b2b29022e3ef139ebcd8923c0222ba93fb2f15205cfe733</cites><orcidid>0000-0003-4150-2202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JD026676$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JD026676$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Zidikheri, Meelis J.</creatorcontrib><creatorcontrib>Lucas, Christopher</creatorcontrib><creatorcontrib>Potts, Rodney J.</creatorcontrib><title>Estimation of optimal dispersion model source parameters using satellite detections of volcanic ash</title><title>Journal of geophysical research. Atmospheres</title><description>In this paper we demonstrate how parameters describing the geometry of the volcanic ash source for a particular volcanic ash dispersion model (Hybrid Single‐Particle Lagrangian Integrated Trajectory (HYSPLIT)) may be inferred by the use of satellite data and multiple trial simulations. The areas of space likely to be contaminated by ash are identified with the aid of various remote sensing techniques, and polygons are drawn around these areas as they would be in an operational setting. Dispersion model simulations are initialized by either a cylindrical source or a specified ash distribution depending on the context. Parameters of interest such as the base and top height, diameter, and optimal release time of the cylindrical source or the height of the specified ash distribution are inferred by forming a parameter grid and running multiple simulations for each parameter grid point value. Optimal values of the parameter values are identified by calculating spatial correlations between the model simulations and observations. We demonstrate that the methodology can be used to correctly infer various model parameters and improve volcanic ash forecasts in various eruption case studies. Plain Language Summary Airborne volcanic ash is a hazard to aviation. Accurate forecasts of airspace likely to be contaminated by ash are therefore crucial for effective risk management. In this paper we show how information about the location of ash‐contaminated areas at times prior to the issuance of the latest forecast can be used to estimate various model parameters that are not easily obtained by other means such as the height of the ash column at the volcano. This in turn leads to better forecasts of ash transport. We demonstrate the efficacy of this approach using several case studies. Key Points Ash detection fields constructed from a variety of sources, including human input, are a reliable source of information about volcanic ash Ash detections can be used to infer important dispersion model parameters such as ash column height Use of optimal dispersion model parameters as obtained from the detection field leads to better forecasts and therefore improved guidance</description><subject>Airspace</subject><subject>ash</subject><subject>Aviation</subject><subject>Case studies</subject><subject>Computer simulation</subject><subject>Contamination</subject><subject>data assimilation</subject><subject>Detection</subject><subject>Dispersion</subject><subject>Dispersions</subject><subject>Distribution</subject><subject>Geophysics</subject><subject>Height</subject><subject>Identification</subject><subject>inverse modeling</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Polygons</subject><subject>Remote sensing</subject><subject>Remote sensing techniques</subject><subject>Risk management</subject><subject>Satellite data</subject><subject>Satellites</subject><subject>Sensing techniques</subject><subject>Simulation</subject><subject>Volcanic activity</subject><subject>Volcanic ash</subject><subject>volcano</subject><subject>Volcanoes</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWGp3PkDAraP5mSSTpbS1WgRBFNyFTCbRlOlkTKZK394MFXHl3eTm5OPckwvAOUZXGCFyTRAW6wUinAt-BCYEc1lUUvLj3168noJZShuUq0K0ZOUEmGUa_FYPPnQwOBj68dbCxqfexjSq29DYFqawi8bCXke9tUN-grvkuzeY9GDb1g8WNlk2o08ajT5Da3TnDdTp_QycON0mO_s5p-Dldvk8vyseHlf385uHQlNBaUG4qJljzOiKCiRoKWpSE4kIsdQ6TKWtTVNJQk2WSK0ldTVxmBHEjLPZYQouDr59DB87mwa1yam7PFJhSbGQJZdVpi4PlIkhpWid6mP-c9wrjNS4SfV3kxmnB_zLt3b_L6vWq6cFozJH-QZs6nU-</recordid><startdate>20170816</startdate><enddate>20170816</enddate><creator>Zidikheri, Meelis J.</creator><creator>Lucas, Christopher</creator><creator>Potts, Rodney J.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4150-2202</orcidid></search><sort><creationdate>20170816</creationdate><title>Estimation of optimal dispersion model source parameters using satellite detections of volcanic ash</title><author>Zidikheri, Meelis J. ; Lucas, Christopher ; Potts, Rodney J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3733-267b5f55ca83707347b2b29022e3ef139ebcd8923c0222ba93fb2f15205cfe733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Airspace</topic><topic>ash</topic><topic>Aviation</topic><topic>Case studies</topic><topic>Computer simulation</topic><topic>Contamination</topic><topic>data assimilation</topic><topic>Detection</topic><topic>Dispersion</topic><topic>Dispersions</topic><topic>Distribution</topic><topic>Geophysics</topic><topic>Height</topic><topic>Identification</topic><topic>inverse modeling</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Polygons</topic><topic>Remote sensing</topic><topic>Remote sensing techniques</topic><topic>Risk management</topic><topic>Satellite data</topic><topic>Satellites</topic><topic>Sensing techniques</topic><topic>Simulation</topic><topic>Volcanic activity</topic><topic>Volcanic ash</topic><topic>volcano</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zidikheri, Meelis J.</creatorcontrib><creatorcontrib>Lucas, Christopher</creatorcontrib><creatorcontrib>Potts, Rodney J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zidikheri, Meelis J.</au><au>Lucas, Christopher</au><au>Potts, Rodney J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of optimal dispersion model source parameters using satellite detections of volcanic ash</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2017-08-16</date><risdate>2017</risdate><volume>122</volume><issue>15</issue><spage>8207</spage><epage>8232</epage><pages>8207-8232</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>In this paper we demonstrate how parameters describing the geometry of the volcanic ash source for a particular volcanic ash dispersion model (Hybrid Single‐Particle Lagrangian Integrated Trajectory (HYSPLIT)) may be inferred by the use of satellite data and multiple trial simulations. The areas of space likely to be contaminated by ash are identified with the aid of various remote sensing techniques, and polygons are drawn around these areas as they would be in an operational setting. Dispersion model simulations are initialized by either a cylindrical source or a specified ash distribution depending on the context. Parameters of interest such as the base and top height, diameter, and optimal release time of the cylindrical source or the height of the specified ash distribution are inferred by forming a parameter grid and running multiple simulations for each parameter grid point value. Optimal values of the parameter values are identified by calculating spatial correlations between the model simulations and observations. We demonstrate that the methodology can be used to correctly infer various model parameters and improve volcanic ash forecasts in various eruption case studies. Plain Language Summary Airborne volcanic ash is a hazard to aviation. Accurate forecasts of airspace likely to be contaminated by ash are therefore crucial for effective risk management. In this paper we show how information about the location of ash‐contaminated areas at times prior to the issuance of the latest forecast can be used to estimate various model parameters that are not easily obtained by other means such as the height of the ash column at the volcano. This in turn leads to better forecasts of ash transport. We demonstrate the efficacy of this approach using several case studies. Key Points Ash detection fields constructed from a variety of sources, including human input, are a reliable source of information about volcanic ash Ash detections can be used to infer important dispersion model parameters such as ash column height Use of optimal dispersion model parameters as obtained from the detection field leads to better forecasts and therefore improved guidance</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JD026676</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-4150-2202</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2017-08, Vol.122 (15), p.8207-8232
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_1931794698
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Airspace
ash
Aviation
Case studies
Computer simulation
Contamination
data assimilation
Detection
Dispersion
Dispersions
Distribution
Geophysics
Height
Identification
inverse modeling
Mathematical models
modeling
Parameter estimation
Parameters
Polygons
Remote sensing
Remote sensing techniques
Risk management
Satellite data
Satellites
Sensing techniques
Simulation
Volcanic activity
Volcanic ash
volcano
Volcanoes
title Estimation of optimal dispersion model source parameters using satellite detections of volcanic ash
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20optimal%20dispersion%20model%20source%20parameters%20using%20satellite%20detections%20of%20volcanic%20ash&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Zidikheri,%20Meelis%20J.&rft.date=2017-08-16&rft.volume=122&rft.issue=15&rft.spage=8207&rft.epage=8232&rft.pages=8207-8232&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2017JD026676&rft_dat=%3Cproquest_cross%3E1931794698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931794698&rft_id=info:pmid/&rfr_iscdi=true