Electrochemical performance of polymer electrolytes based on Poly(vinyl alcohol)/Poly(acrylic acid) blend and Pyrrolidinium ionic liquid for lithium rechargeable batteries

Polymer electrolytes offer the most promising solution to address the all-solid-state battery requirements such as flexibility, leak-proof packing and easy processing. In this study, a polymer blend of 25mol% poly(acrylic acid) (PAA) and 75mol% poly(vinyl alcohol) (PVA) was optimized based on its th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2017-06, Vol.240, p.371-378
Hauptverfasser: Thayumanasundaram, Savitha, Rangasamy, Vijay Shankar, Seo, Jin Won, Locquet, Jean-Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue
container_start_page 371
container_title Electrochimica acta
container_volume 240
creator Thayumanasundaram, Savitha
Rangasamy, Vijay Shankar
Seo, Jin Won
Locquet, Jean-Pierre
description Polymer electrolytes offer the most promising solution to address the all-solid-state battery requirements such as flexibility, leak-proof packing and easy processing. In this study, a polymer blend of 25mol% poly(acrylic acid) (PAA) and 75mol% poly(vinyl alcohol) (PVA) was optimized based on its thermal, mechanical and structural properties. The ionic liquid (IL) electrolyte, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRTFSI) with 0.2m lithium bis(trifluoromethansulfonyl)imide (LiTFSI), was added to the polymer blend in different molar ratios. A maximum ionic conductivity of 1mScm−1 is observed at 90°C in the membrane with 70mol% IL. Cyclic voltammetry of the polymer electrolytes shows peaks corresponding to lithium stripping (+0.25V vs. Li+/Li) and deposition (−0.3V vs. Li+/Li) processes indicating the occurrence of a highly reversible redox process. The electrochemical stability window of these polymer electrolytes, as determined by linear sweep voltammetry, extends up to 5V, suggesting that these electrolytes could be suitable for batteries that use high voltage cathode materials. A lithium transference number (tLi+) of 0.4 was determined for the polymer electrolytes by using chronoamperometry and impedance measurements. Galvanostatic charge-discharge studies of the polymer electrolytes in a lithium half-cell with LiCoO2 (LCO) as cathode delivers a capacity of about 100mAhg−1 at 60°C. Coin-type half-cell with LiFePO4 (LFP) cathode and the polymer electrolyte containing 70mol% IL delivered a capacity of 172mAhg−1. Interestingly, the LFP/polymer composite cathode (LFP-C) delivers a higher capacity (215mAhg−1 at 60°C) than the pristine LiFePO4 cathode.
doi_str_mv 10.1016/j.electacta.2017.04.107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931714107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468617308642</els_id><sourcerecordid>1931714107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-221b3a074eb179b183c42a11eae4ee966e4efccfbb1190d7ccdab25a494d9c7d3</originalsourceid><addsrcrecordid>eNqFUcFO3DAQtSoqsUC_AUtc4JDFk5g4OSJEWyQkONCz5YwnXa-ceLGzSPkmfhJvU3FFsjWjmffmaeYxdg5iDQLq6-2aPOFk8luXAtRayNxQ39gKGlUVVXPTHrGVEFAVsm7qY3aS0lYIoWolVuz9_kCOATc0ODSe7yj2IQ5mROKh57vg54EipwXm54kS70wiy8PIn3Ph8s2Ns-fGY9gEf3X9r2Ywzt4hN-jsFe88jZab_J_nmIc460a3H7gLY8Z497p3lmfVnE6bQyMSbkz8SyYzs9o0UXSUztj33vhEP_7HU_bn5_3L3e_i8enXw93tY4FVI6aiLKGrjFCSOlBtB02FsjQAZEgStXWdQ4_Ydx1AK6xCtKYrb4xspW1R2eqUXSxzdzG87ilNehv2ccySGtoKFMh834xSCwpjSClSr3fRDSbOGoQ-OKO3-tMZfXBGC6kX5u3CpLzEm6OoEzrKB7cuLz5pG9yXMz4AwXChDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931714107</pqid></control><display><type>article</type><title>Electrochemical performance of polymer electrolytes based on Poly(vinyl alcohol)/Poly(acrylic acid) blend and Pyrrolidinium ionic liquid for lithium rechargeable batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Thayumanasundaram, Savitha ; Rangasamy, Vijay Shankar ; Seo, Jin Won ; Locquet, Jean-Pierre</creator><creatorcontrib>Thayumanasundaram, Savitha ; Rangasamy, Vijay Shankar ; Seo, Jin Won ; Locquet, Jean-Pierre</creatorcontrib><description>Polymer electrolytes offer the most promising solution to address the all-solid-state battery requirements such as flexibility, leak-proof packing and easy processing. In this study, a polymer blend of 25mol% poly(acrylic acid) (PAA) and 75mol% poly(vinyl alcohol) (PVA) was optimized based on its thermal, mechanical and structural properties. The ionic liquid (IL) electrolyte, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRTFSI) with 0.2m lithium bis(trifluoromethansulfonyl)imide (LiTFSI), was added to the polymer blend in different molar ratios. A maximum ionic conductivity of 1mScm−1 is observed at 90°C in the membrane with 70mol% IL. Cyclic voltammetry of the polymer electrolytes shows peaks corresponding to lithium stripping (+0.25V vs. Li+/Li) and deposition (−0.3V vs. Li+/Li) processes indicating the occurrence of a highly reversible redox process. The electrochemical stability window of these polymer electrolytes, as determined by linear sweep voltammetry, extends up to 5V, suggesting that these electrolytes could be suitable for batteries that use high voltage cathode materials. A lithium transference number (tLi+) of 0.4 was determined for the polymer electrolytes by using chronoamperometry and impedance measurements. Galvanostatic charge-discharge studies of the polymer electrolytes in a lithium half-cell with LiCoO2 (LCO) as cathode delivers a capacity of about 100mAhg−1 at 60°C. Coin-type half-cell with LiFePO4 (LFP) cathode and the polymer electrolyte containing 70mol% IL delivered a capacity of 172mAhg−1. Interestingly, the LFP/polymer composite cathode (LFP-C) delivers a higher capacity (215mAhg−1 at 60°C) than the pristine LiFePO4 cathode.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2017.04.107</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acrylic acid ; Batteries ; Conductivity ; Electrochemical analysis ; Electrolytes ; Impedance ; Ion currents ; Ionic liquids ; LiFePO4 ; Lithium ; lithium transference number ; polymer electrolyte ; Polymers ; PVA ; Pyrrolidinium ionic liquid ; Rechargeable batteries ; Stripping ; Voltammetry</subject><ispartof>Electrochimica acta, 2017-06, Vol.240, p.371-378</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 20, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-221b3a074eb179b183c42a11eae4ee966e4efccfbb1190d7ccdab25a494d9c7d3</citedby><cites>FETCH-LOGICAL-c380t-221b3a074eb179b183c42a11eae4ee966e4efccfbb1190d7ccdab25a494d9c7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468617308642$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Thayumanasundaram, Savitha</creatorcontrib><creatorcontrib>Rangasamy, Vijay Shankar</creatorcontrib><creatorcontrib>Seo, Jin Won</creatorcontrib><creatorcontrib>Locquet, Jean-Pierre</creatorcontrib><title>Electrochemical performance of polymer electrolytes based on Poly(vinyl alcohol)/Poly(acrylic acid) blend and Pyrrolidinium ionic liquid for lithium rechargeable batteries</title><title>Electrochimica acta</title><description>Polymer electrolytes offer the most promising solution to address the all-solid-state battery requirements such as flexibility, leak-proof packing and easy processing. In this study, a polymer blend of 25mol% poly(acrylic acid) (PAA) and 75mol% poly(vinyl alcohol) (PVA) was optimized based on its thermal, mechanical and structural properties. The ionic liquid (IL) electrolyte, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRTFSI) with 0.2m lithium bis(trifluoromethansulfonyl)imide (LiTFSI), was added to the polymer blend in different molar ratios. A maximum ionic conductivity of 1mScm−1 is observed at 90°C in the membrane with 70mol% IL. Cyclic voltammetry of the polymer electrolytes shows peaks corresponding to lithium stripping (+0.25V vs. Li+/Li) and deposition (−0.3V vs. Li+/Li) processes indicating the occurrence of a highly reversible redox process. The electrochemical stability window of these polymer electrolytes, as determined by linear sweep voltammetry, extends up to 5V, suggesting that these electrolytes could be suitable for batteries that use high voltage cathode materials. A lithium transference number (tLi+) of 0.4 was determined for the polymer electrolytes by using chronoamperometry and impedance measurements. Galvanostatic charge-discharge studies of the polymer electrolytes in a lithium half-cell with LiCoO2 (LCO) as cathode delivers a capacity of about 100mAhg−1 at 60°C. Coin-type half-cell with LiFePO4 (LFP) cathode and the polymer electrolyte containing 70mol% IL delivered a capacity of 172mAhg−1. Interestingly, the LFP/polymer composite cathode (LFP-C) delivers a higher capacity (215mAhg−1 at 60°C) than the pristine LiFePO4 cathode.</description><subject>Acrylic acid</subject><subject>Batteries</subject><subject>Conductivity</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Impedance</subject><subject>Ion currents</subject><subject>Ionic liquids</subject><subject>LiFePO4</subject><subject>Lithium</subject><subject>lithium transference number</subject><subject>polymer electrolyte</subject><subject>Polymers</subject><subject>PVA</subject><subject>Pyrrolidinium ionic liquid</subject><subject>Rechargeable batteries</subject><subject>Stripping</subject><subject>Voltammetry</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUcFO3DAQtSoqsUC_AUtc4JDFk5g4OSJEWyQkONCz5YwnXa-ceLGzSPkmfhJvU3FFsjWjmffmaeYxdg5iDQLq6-2aPOFk8luXAtRayNxQ39gKGlUVVXPTHrGVEFAVsm7qY3aS0lYIoWolVuz9_kCOATc0ODSe7yj2IQ5mROKh57vg54EipwXm54kS70wiy8PIn3Ph8s2Ns-fGY9gEf3X9r2Ywzt4hN-jsFe88jZab_J_nmIc460a3H7gLY8Z497p3lmfVnE6bQyMSbkz8SyYzs9o0UXSUztj33vhEP_7HU_bn5_3L3e_i8enXw93tY4FVI6aiLKGrjFCSOlBtB02FsjQAZEgStXWdQ4_Ydx1AK6xCtKYrb4xspW1R2eqUXSxzdzG87ilNehv2ccySGtoKFMh834xSCwpjSClSr3fRDSbOGoQ-OKO3-tMZfXBGC6kX5u3CpLzEm6OoEzrKB7cuLz5pG9yXMz4AwXChDQ</recordid><startdate>20170620</startdate><enddate>20170620</enddate><creator>Thayumanasundaram, Savitha</creator><creator>Rangasamy, Vijay Shankar</creator><creator>Seo, Jin Won</creator><creator>Locquet, Jean-Pierre</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170620</creationdate><title>Electrochemical performance of polymer electrolytes based on Poly(vinyl alcohol)/Poly(acrylic acid) blend and Pyrrolidinium ionic liquid for lithium rechargeable batteries</title><author>Thayumanasundaram, Savitha ; Rangasamy, Vijay Shankar ; Seo, Jin Won ; Locquet, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-221b3a074eb179b183c42a11eae4ee966e4efccfbb1190d7ccdab25a494d9c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acrylic acid</topic><topic>Batteries</topic><topic>Conductivity</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Impedance</topic><topic>Ion currents</topic><topic>Ionic liquids</topic><topic>LiFePO4</topic><topic>Lithium</topic><topic>lithium transference number</topic><topic>polymer electrolyte</topic><topic>Polymers</topic><topic>PVA</topic><topic>Pyrrolidinium ionic liquid</topic><topic>Rechargeable batteries</topic><topic>Stripping</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thayumanasundaram, Savitha</creatorcontrib><creatorcontrib>Rangasamy, Vijay Shankar</creatorcontrib><creatorcontrib>Seo, Jin Won</creatorcontrib><creatorcontrib>Locquet, Jean-Pierre</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thayumanasundaram, Savitha</au><au>Rangasamy, Vijay Shankar</au><au>Seo, Jin Won</au><au>Locquet, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical performance of polymer electrolytes based on Poly(vinyl alcohol)/Poly(acrylic acid) blend and Pyrrolidinium ionic liquid for lithium rechargeable batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2017-06-20</date><risdate>2017</risdate><volume>240</volume><spage>371</spage><epage>378</epage><pages>371-378</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Polymer electrolytes offer the most promising solution to address the all-solid-state battery requirements such as flexibility, leak-proof packing and easy processing. In this study, a polymer blend of 25mol% poly(acrylic acid) (PAA) and 75mol% poly(vinyl alcohol) (PVA) was optimized based on its thermal, mechanical and structural properties. The ionic liquid (IL) electrolyte, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRTFSI) with 0.2m lithium bis(trifluoromethansulfonyl)imide (LiTFSI), was added to the polymer blend in different molar ratios. A maximum ionic conductivity of 1mScm−1 is observed at 90°C in the membrane with 70mol% IL. Cyclic voltammetry of the polymer electrolytes shows peaks corresponding to lithium stripping (+0.25V vs. Li+/Li) and deposition (−0.3V vs. Li+/Li) processes indicating the occurrence of a highly reversible redox process. The electrochemical stability window of these polymer electrolytes, as determined by linear sweep voltammetry, extends up to 5V, suggesting that these electrolytes could be suitable for batteries that use high voltage cathode materials. A lithium transference number (tLi+) of 0.4 was determined for the polymer electrolytes by using chronoamperometry and impedance measurements. Galvanostatic charge-discharge studies of the polymer electrolytes in a lithium half-cell with LiCoO2 (LCO) as cathode delivers a capacity of about 100mAhg−1 at 60°C. Coin-type half-cell with LiFePO4 (LFP) cathode and the polymer electrolyte containing 70mol% IL delivered a capacity of 172mAhg−1. Interestingly, the LFP/polymer composite cathode (LFP-C) delivers a higher capacity (215mAhg−1 at 60°C) than the pristine LiFePO4 cathode.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2017.04.107</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2017-06, Vol.240, p.371-378
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_1931714107
source Elsevier ScienceDirect Journals
subjects Acrylic acid
Batteries
Conductivity
Electrochemical analysis
Electrolytes
Impedance
Ion currents
Ionic liquids
LiFePO4
Lithium
lithium transference number
polymer electrolyte
Polymers
PVA
Pyrrolidinium ionic liquid
Rechargeable batteries
Stripping
Voltammetry
title Electrochemical performance of polymer electrolytes based on Poly(vinyl alcohol)/Poly(acrylic acid) blend and Pyrrolidinium ionic liquid for lithium rechargeable batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20performance%20of%20polymer%20electrolytes%20based%20on%20Poly(vinyl%20alcohol)/Poly(acrylic%20acid)%20blend%20and%20Pyrrolidinium%20ionic%20liquid%20for%20lithium%20rechargeable%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Thayumanasundaram,%20Savitha&rft.date=2017-06-20&rft.volume=240&rft.spage=371&rft.epage=378&rft.pages=371-378&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2017.04.107&rft_dat=%3Cproquest_cross%3E1931714107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931714107&rft_id=info:pmid/&rft_els_id=S0013468617308642&rfr_iscdi=true