Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery

•Three hierarchical SOMs were tested on UAV images for S. marianum weed mapping.•Challenging discrimination between vegetation species with similar spectral reflectance.•Classifiers produced high quality maps of >98% agreement with the validation dataset.•The proposed neural networks provided the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2017-06, Vol.139, p.224-230
Hauptverfasser: Pantazi, X.E., Tamouridou, A.A., Alexandridis, T.K., Lagopodi, A.L., Kashefi, J., Moshou, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue
container_start_page 224
container_title Computers and electronics in agriculture
container_volume 139
creator Pantazi, X.E.
Tamouridou, A.A.
Alexandridis, T.K.
Lagopodi, A.L.
Kashefi, J.
Moshou, D.
description •Three hierarchical SOMs were tested on UAV images for S. marianum weed mapping.•Challenging discrimination between vegetation species with similar spectral reflectance.•Classifiers produced high quality maps of >98% agreement with the validation dataset.•The proposed neural networks provided the factors affecting S. marianum detection. Remote sensing has been used for species discrimination and for operational weed mapping. In the study presented here, the detection and mapping of Silybum marianum using a hierarchical self-organising map is reported. A multispectral camera (green-red-NIR) mounted on a fixed wing Unmanned Aircraft System (UAS) was used for the acquisition of high-resolution images of a pixel size of 0.1m, resampled to 0.5m. The Supervised Kohonen Network (SKN), Counter-propagation Artificial Neural Network (CP-ANN) and XY-Fusion network (XY-F) were used to identify the S. marianum among other vegetation in a field, with Avena sterilis L. being predominant. As input features to the classifiers, the three spectral bands of Red, Green, Near Infrared (NIR) and the texture layer were used. The S. marianum identification rates using SKN achieved an accuracy level of 98.64%, the CP-ANN achieved 98.87%, while XY-F was 98.64%. The results prove the feasibility of operational S. marianum mapping using hierarchical self-organising maps on multispectral UAS imagery.
doi_str_mv 10.1016/j.compag.2017.05.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931706320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169916308973</els_id><sourcerecordid>1931706320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-884d53642859569999f7fd4173429f9de7c9853a109b2becbc4c458ec71457823</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywisU6wYye2N0hVVR4SEgvo2riOnTpK42AnRf17HMKa1Whm7p3HAeAWwQxBVN43mXKHXtZZDhHNYJHBvDwDC8RonlIE6TlYRBlLUcn5JbgKoYEx54wuwOfmKNtRDtZ1iTPJ3movvdpbJdsk6Nakzteys8F2dXKQfUiM88m31tWU9VN1_O1tV-_JYWwHG3qtBh_d9iBr7U_X4MLINuibv7gE28fNx_o5fX17elmvXlOFMRlSxkhV4JLkrOBFPJNzQ01FEMUk54ZXmirOCiwR5Lt8p9VOEUUKphVFpKAsx0twN8_tvfsadRhE40bfxZUCcYwoLHEOo4rMKuVdCF4b0ft4qD8JBMXEUjRiZikmlgIWIrKMtofZpuMHx8hIBGV1p3RlfXxXVM7-P-AH7LZ_FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931706320</pqid></control><display><type>article</type><title>Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery</title><source>Elsevier ScienceDirect Journals</source><creator>Pantazi, X.E. ; Tamouridou, A.A. ; Alexandridis, T.K. ; Lagopodi, A.L. ; Kashefi, J. ; Moshou, D.</creator><creatorcontrib>Pantazi, X.E. ; Tamouridou, A.A. ; Alexandridis, T.K. ; Lagopodi, A.L. ; Kashefi, J. ; Moshou, D.</creatorcontrib><description>•Three hierarchical SOMs were tested on UAV images for S. marianum weed mapping.•Challenging discrimination between vegetation species with similar spectral reflectance.•Classifiers produced high quality maps of &gt;98% agreement with the validation dataset.•The proposed neural networks provided the factors affecting S. marianum detection. Remote sensing has been used for species discrimination and for operational weed mapping. In the study presented here, the detection and mapping of Silybum marianum using a hierarchical self-organising map is reported. A multispectral camera (green-red-NIR) mounted on a fixed wing Unmanned Aircraft System (UAS) was used for the acquisition of high-resolution images of a pixel size of 0.1m, resampled to 0.5m. The Supervised Kohonen Network (SKN), Counter-propagation Artificial Neural Network (CP-ANN) and XY-Fusion network (XY-F) were used to identify the S. marianum among other vegetation in a field, with Avena sterilis L. being predominant. As input features to the classifiers, the three spectral bands of Red, Green, Near Infrared (NIR) and the texture layer were used. The S. marianum identification rates using SKN achieved an accuracy level of 98.64%, the CP-ANN achieved 98.87%, while XY-F was 98.64%. The results prove the feasibility of operational S. marianum mapping using hierarchical self-organising maps on multispectral UAS imagery.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2017.05.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial neural networks ; Band spectra ; eBee ; Flowers &amp; plants ; High resolution ; Identification ; Image acquisition ; Image resolution ; Imagery ; Mapping ; Near infrared radiation ; Neural networks ; Precision farming ; Remote sensing ; Site-specific weed management ; Spectral bands ; Unmanned aerial vehicles ; Unmanned aircraft ; Unmanned aircraft system ; Vegetation</subject><ispartof>Computers and electronics in agriculture, 2017-06, Vol.139, p.224-230</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-884d53642859569999f7fd4173429f9de7c9853a109b2becbc4c458ec71457823</citedby><cites>FETCH-LOGICAL-c334t-884d53642859569999f7fd4173429f9de7c9853a109b2becbc4c458ec71457823</cites><orcidid>0000-0003-3225-8033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compag.2017.05.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Pantazi, X.E.</creatorcontrib><creatorcontrib>Tamouridou, A.A.</creatorcontrib><creatorcontrib>Alexandridis, T.K.</creatorcontrib><creatorcontrib>Lagopodi, A.L.</creatorcontrib><creatorcontrib>Kashefi, J.</creatorcontrib><creatorcontrib>Moshou, D.</creatorcontrib><title>Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery</title><title>Computers and electronics in agriculture</title><description>•Three hierarchical SOMs were tested on UAV images for S. marianum weed mapping.•Challenging discrimination between vegetation species with similar spectral reflectance.•Classifiers produced high quality maps of &gt;98% agreement with the validation dataset.•The proposed neural networks provided the factors affecting S. marianum detection. Remote sensing has been used for species discrimination and for operational weed mapping. In the study presented here, the detection and mapping of Silybum marianum using a hierarchical self-organising map is reported. A multispectral camera (green-red-NIR) mounted on a fixed wing Unmanned Aircraft System (UAS) was used for the acquisition of high-resolution images of a pixel size of 0.1m, resampled to 0.5m. The Supervised Kohonen Network (SKN), Counter-propagation Artificial Neural Network (CP-ANN) and XY-Fusion network (XY-F) were used to identify the S. marianum among other vegetation in a field, with Avena sterilis L. being predominant. As input features to the classifiers, the three spectral bands of Red, Green, Near Infrared (NIR) and the texture layer were used. The S. marianum identification rates using SKN achieved an accuracy level of 98.64%, the CP-ANN achieved 98.87%, while XY-F was 98.64%. The results prove the feasibility of operational S. marianum mapping using hierarchical self-organising maps on multispectral UAS imagery.</description><subject>Artificial neural networks</subject><subject>Band spectra</subject><subject>eBee</subject><subject>Flowers &amp; plants</subject><subject>High resolution</subject><subject>Identification</subject><subject>Image acquisition</subject><subject>Image resolution</subject><subject>Imagery</subject><subject>Mapping</subject><subject>Near infrared radiation</subject><subject>Neural networks</subject><subject>Precision farming</subject><subject>Remote sensing</subject><subject>Site-specific weed management</subject><subject>Spectral bands</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned aircraft</subject><subject>Unmanned aircraft system</subject><subject>Vegetation</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywisU6wYye2N0hVVR4SEgvo2riOnTpK42AnRf17HMKa1Whm7p3HAeAWwQxBVN43mXKHXtZZDhHNYJHBvDwDC8RonlIE6TlYRBlLUcn5JbgKoYEx54wuwOfmKNtRDtZ1iTPJ3movvdpbJdsk6Nakzteys8F2dXKQfUiM88m31tWU9VN1_O1tV-_JYWwHG3qtBh_d9iBr7U_X4MLINuibv7gE28fNx_o5fX17elmvXlOFMRlSxkhV4JLkrOBFPJNzQ01FEMUk54ZXmirOCiwR5Lt8p9VOEUUKphVFpKAsx0twN8_tvfsadRhE40bfxZUCcYwoLHEOo4rMKuVdCF4b0ft4qD8JBMXEUjRiZikmlgIWIrKMtofZpuMHx8hIBGV1p3RlfXxXVM7-P-AH7LZ_FA</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>Pantazi, X.E.</creator><creator>Tamouridou, A.A.</creator><creator>Alexandridis, T.K.</creator><creator>Lagopodi, A.L.</creator><creator>Kashefi, J.</creator><creator>Moshou, D.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3225-8033</orcidid></search><sort><creationdate>20170615</creationdate><title>Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery</title><author>Pantazi, X.E. ; Tamouridou, A.A. ; Alexandridis, T.K. ; Lagopodi, A.L. ; Kashefi, J. ; Moshou, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-884d53642859569999f7fd4173429f9de7c9853a109b2becbc4c458ec71457823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Band spectra</topic><topic>eBee</topic><topic>Flowers &amp; plants</topic><topic>High resolution</topic><topic>Identification</topic><topic>Image acquisition</topic><topic>Image resolution</topic><topic>Imagery</topic><topic>Mapping</topic><topic>Near infrared radiation</topic><topic>Neural networks</topic><topic>Precision farming</topic><topic>Remote sensing</topic><topic>Site-specific weed management</topic><topic>Spectral bands</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned aircraft</topic><topic>Unmanned aircraft system</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pantazi, X.E.</creatorcontrib><creatorcontrib>Tamouridou, A.A.</creatorcontrib><creatorcontrib>Alexandridis, T.K.</creatorcontrib><creatorcontrib>Lagopodi, A.L.</creatorcontrib><creatorcontrib>Kashefi, J.</creatorcontrib><creatorcontrib>Moshou, D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pantazi, X.E.</au><au>Tamouridou, A.A.</au><au>Alexandridis, T.K.</au><au>Lagopodi, A.L.</au><au>Kashefi, J.</au><au>Moshou, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2017-06-15</date><risdate>2017</risdate><volume>139</volume><spage>224</spage><epage>230</epage><pages>224-230</pages><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•Three hierarchical SOMs were tested on UAV images for S. marianum weed mapping.•Challenging discrimination between vegetation species with similar spectral reflectance.•Classifiers produced high quality maps of &gt;98% agreement with the validation dataset.•The proposed neural networks provided the factors affecting S. marianum detection. Remote sensing has been used for species discrimination and for operational weed mapping. In the study presented here, the detection and mapping of Silybum marianum using a hierarchical self-organising map is reported. A multispectral camera (green-red-NIR) mounted on a fixed wing Unmanned Aircraft System (UAS) was used for the acquisition of high-resolution images of a pixel size of 0.1m, resampled to 0.5m. The Supervised Kohonen Network (SKN), Counter-propagation Artificial Neural Network (CP-ANN) and XY-Fusion network (XY-F) were used to identify the S. marianum among other vegetation in a field, with Avena sterilis L. being predominant. As input features to the classifiers, the three spectral bands of Red, Green, Near Infrared (NIR) and the texture layer were used. The S. marianum identification rates using SKN achieved an accuracy level of 98.64%, the CP-ANN achieved 98.87%, while XY-F was 98.64%. The results prove the feasibility of operational S. marianum mapping using hierarchical self-organising maps on multispectral UAS imagery.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2017.05.026</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3225-8033</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2017-06, Vol.139, p.224-230
issn 0168-1699
1872-7107
language eng
recordid cdi_proquest_journals_1931706320
source Elsevier ScienceDirect Journals
subjects Artificial neural networks
Band spectra
eBee
Flowers & plants
High resolution
Identification
Image acquisition
Image resolution
Imagery
Mapping
Near infrared radiation
Neural networks
Precision farming
Remote sensing
Site-specific weed management
Spectral bands
Unmanned aerial vehicles
Unmanned aircraft
Unmanned aircraft system
Vegetation
title Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20hierarchical%20self-organising%20maps%20for%20weed%20mapping%20using%20UAS%20multispectral%20imagery&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Pantazi,%20X.E.&rft.date=2017-06-15&rft.volume=139&rft.spage=224&rft.epage=230&rft.pages=224-230&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2017.05.026&rft_dat=%3Cproquest_cross%3E1931706320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931706320&rft_id=info:pmid/&rft_els_id=S0168169916308973&rfr_iscdi=true