When a smooth self-map of a semi-simple Lie group can realize the least number of periodic points

There are two algebraic lower bounds of the number of n-periodic points of a self-map f : M →4 M of a compact smooth manifold of dimension at least 3: NFn(f) = min{#Fix(gn);g - f; g continuous} and NJDn(f) = min{#Fix(gn);g - f; g smooth}. In general, NJDn(f) may be much greater than NFn(f). We show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2017-09, Vol.60 (9), p.1579-1590
1. Verfasser: Jezierski, Jerzy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There are two algebraic lower bounds of the number of n-periodic points of a self-map f : M →4 M of a compact smooth manifold of dimension at least 3: NFn(f) = min{#Fix(gn);g - f; g continuous} and NJDn(f) = min{#Fix(gn);g - f; g smooth}. In general, NJDn(f) may be much greater than NFn(f). We show that for a self-map of a semi-simple Lie group, inducing the identity fundamental group homomorphism, the equality NFn(f) = NJDn(f) holds for all n →← all eigenvalues of a quotient cohomology homomorphism induced by f have moduli ≤ 1.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-016-9099-9