Unbounded norm convergence in Banach lattices

A net ( x α ) in a vector lattice X is unbounded order convergent to x ∈ X if | x α - x | ∧ u converges to 0 in order for all u ∈ X + . This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2017-09, Vol.21 (3), p.963-974
Hauptverfasser: Deng, Y., O’Brien, M., Troitsky, V. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 974
container_issue 3
container_start_page 963
container_title Positivity : an international journal devoted to the theory and applications of positivity in analysis
container_volume 21
creator Deng, Y.
O’Brien, M.
Troitsky, V. G.
description A net ( x α ) in a vector lattice X is unbounded order convergent to x ∈ X if | x α - x | ∧ u converges to 0 in order for all u ∈ X + . This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to general vector lattices. In this paper, we study a variation of this convergence for Banach lattices. A net ( x α ) in a Banach lattice X is unbounded norm convergent to x if for all u ∈ X + . We show that this convergence may be viewed as a generalization of convergence in measure. We also investigate its relationship with other convergences.
doi_str_mv 10.1007/s11117-016-0446-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931134098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931134098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b974932e7ca254860457019d460b1fe99bd6c27bfd5d88eeea908125b80ab253</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRvuHDu2R6j4kiqxlNmyHaekap1ip0j8e1yFgYVb7ob3eU96CLlGuEUAeZexjKSADQXOG6pPyAyFZFQzhaflrpWgyDQ7Jxc5bwAKxWFG6Ht0wyG2oa3ikHaVH-JXSOsQfaj6WD3YaP1HtbXj2PuQL8lZZ7c5XP3uOVk9Pa4WL3T59vy6uF9SX2MzUqcl1zUL0lsmuGqACwmoW96Awy5o7drGM-m6VrRKhRCsBoVMOAXWMVHPyc1Uu0_D5yHk0WyGQ4rlo0FdI9YctCopnFI-DTmn0Jl96nc2fRsEc5RiJimmSDFHKUYXhk1MLtm4DulP87_QD6gLYpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931134098</pqid></control><display><type>article</type><title>Unbounded norm convergence in Banach lattices</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Deng, Y. ; O’Brien, M. ; Troitsky, V. G.</creator><creatorcontrib>Deng, Y. ; O’Brien, M. ; Troitsky, V. G.</creatorcontrib><description>A net ( x α ) in a vector lattice X is unbounded order convergent to x ∈ X if | x α - x | ∧ u converges to 0 in order for all u ∈ X + . This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to general vector lattices. In this paper, we study a variation of this convergence for Banach lattices. A net ( x α ) in a Banach lattice X is unbounded norm convergent to x if for all u ∈ X + . We show that this convergence may be viewed as a generalization of convergence in measure. We also investigate its relationship with other convergences.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-016-0446-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Convergence ; Econometrics ; Fourier Analysis ; Lattices (mathematics) ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Potential Theory ; Studies</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2017-09, Vol.21 (3), p.963-974</ispartof><rights>Springer International Publishing 2016</rights><rights>Positivity is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b974932e7ca254860457019d460b1fe99bd6c27bfd5d88eeea908125b80ab253</citedby><cites>FETCH-LOGICAL-c316t-b974932e7ca254860457019d460b1fe99bd6c27bfd5d88eeea908125b80ab253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-016-0446-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-016-0446-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Deng, Y.</creatorcontrib><creatorcontrib>O’Brien, M.</creatorcontrib><creatorcontrib>Troitsky, V. G.</creatorcontrib><title>Unbounded norm convergence in Banach lattices</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>A net ( x α ) in a vector lattice X is unbounded order convergent to x ∈ X if | x α - x | ∧ u converges to 0 in order for all u ∈ X + . This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to general vector lattices. In this paper, we study a variation of this convergence for Banach lattices. A net ( x α ) in a Banach lattice X is unbounded norm convergent to x if for all u ∈ X + . We show that this convergence may be viewed as a generalization of convergence in measure. We also investigate its relationship with other convergences.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Convergence</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Lattices (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><subject>Studies</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRvuHDu2R6j4kiqxlNmyHaekap1ip0j8e1yFgYVb7ob3eU96CLlGuEUAeZexjKSADQXOG6pPyAyFZFQzhaflrpWgyDQ7Jxc5bwAKxWFG6Ht0wyG2oa3ikHaVH-JXSOsQfaj6WD3YaP1HtbXj2PuQL8lZZ7c5XP3uOVk9Pa4WL3T59vy6uF9SX2MzUqcl1zUL0lsmuGqACwmoW96Awy5o7drGM-m6VrRKhRCsBoVMOAXWMVHPyc1Uu0_D5yHk0WyGQ4rlo0FdI9YctCopnFI-DTmn0Jl96nc2fRsEc5RiJimmSDFHKUYXhk1MLtm4DulP87_QD6gLYpE</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Deng, Y.</creator><creator>O’Brien, M.</creator><creator>Troitsky, V. G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170901</creationdate><title>Unbounded norm convergence in Banach lattices</title><author>Deng, Y. ; O’Brien, M. ; Troitsky, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b974932e7ca254860457019d460b1fe99bd6c27bfd5d88eeea908125b80ab253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Convergence</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Lattices (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Y.</creatorcontrib><creatorcontrib>O’Brien, M.</creatorcontrib><creatorcontrib>Troitsky, V. G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Y.</au><au>O’Brien, M.</au><au>Troitsky, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbounded norm convergence in Banach lattices</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>21</volume><issue>3</issue><spage>963</spage><epage>974</epage><pages>963-974</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>A net ( x α ) in a vector lattice X is unbounded order convergent to x ∈ X if | x α - x | ∧ u converges to 0 in order for all u ∈ X + . This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to general vector lattices. In this paper, we study a variation of this convergence for Banach lattices. A net ( x α ) in a Banach lattice X is unbounded norm convergent to x if for all u ∈ X + . We show that this convergence may be viewed as a generalization of convergence in measure. We also investigate its relationship with other convergences.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-016-0446-9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-1292
ispartof Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2017-09, Vol.21 (3), p.963-974
issn 1385-1292
1572-9281
language eng
recordid cdi_proquest_journals_1931134098
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Calculus of Variations and Optimal Control
Optimization
Convergence
Econometrics
Fourier Analysis
Lattices (mathematics)
Mathematics
Mathematics and Statistics
Operator Theory
Potential Theory
Studies
title Unbounded norm convergence in Banach lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbounded%20norm%20convergence%20in%20Banach%20lattices&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Deng,%20Y.&rft.date=2017-09-01&rft.volume=21&rft.issue=3&rft.spage=963&rft.epage=974&rft.pages=963-974&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-016-0446-9&rft_dat=%3Cproquest_cross%3E1931134098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931134098&rft_id=info:pmid/&rfr_iscdi=true