Unbounded norm convergence in Banach lattices
A net ( x α ) in a vector lattice X is unbounded order convergent to x ∈ X if | x α - x | ∧ u converges to 0 in order for all u ∈ X + . This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to g...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2017-09, Vol.21 (3), p.963-974 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 974 |
---|---|
container_issue | 3 |
container_start_page | 963 |
container_title | Positivity : an international journal devoted to the theory and applications of positivity in analysis |
container_volume | 21 |
creator | Deng, Y. O’Brien, M. Troitsky, V. G. |
description | A net
(
x
α
)
in a vector lattice
X
is unbounded order convergent to
x
∈
X
if
|
x
α
-
x
|
∧
u
converges to 0 in order for all
u
∈
X
+
. This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to general vector lattices. In this paper, we study a variation of this convergence for Banach lattices. A net
(
x
α
)
in a Banach lattice
X
is unbounded norm convergent to
x
if
for all
u
∈
X
+
. We show that this convergence may be viewed as a generalization of convergence in measure. We also investigate its relationship with other convergences. |
doi_str_mv | 10.1007/s11117-016-0446-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931134098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931134098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b974932e7ca254860457019d460b1fe99bd6c27bfd5d88eeea908125b80ab253</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRvuHDu2R6j4kiqxlNmyHaekap1ip0j8e1yFgYVb7ob3eU96CLlGuEUAeZexjKSADQXOG6pPyAyFZFQzhaflrpWgyDQ7Jxc5bwAKxWFG6Ht0wyG2oa3ikHaVH-JXSOsQfaj6WD3YaP1HtbXj2PuQL8lZZ7c5XP3uOVk9Pa4WL3T59vy6uF9SX2MzUqcl1zUL0lsmuGqACwmoW96Awy5o7drGM-m6VrRKhRCsBoVMOAXWMVHPyc1Uu0_D5yHk0WyGQ4rlo0FdI9YctCopnFI-DTmn0Jl96nc2fRsEc5RiJimmSDFHKUYXhk1MLtm4DulP87_QD6gLYpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931134098</pqid></control><display><type>article</type><title>Unbounded norm convergence in Banach lattices</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Deng, Y. ; O’Brien, M. ; Troitsky, V. G.</creator><creatorcontrib>Deng, Y. ; O’Brien, M. ; Troitsky, V. G.</creatorcontrib><description>A net
(
x
α
)
in a vector lattice
X
is unbounded order convergent to
x
∈
X
if
|
x
α
-
x
|
∧
u
converges to 0 in order for all
u
∈
X
+
. This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to general vector lattices. In this paper, we study a variation of this convergence for Banach lattices. A net
(
x
α
)
in a Banach lattice
X
is unbounded norm convergent to
x
if
for all
u
∈
X
+
. We show that this convergence may be viewed as a generalization of convergence in measure. We also investigate its relationship with other convergences.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-016-0446-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Convergence ; Econometrics ; Fourier Analysis ; Lattices (mathematics) ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Potential Theory ; Studies</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2017-09, Vol.21 (3), p.963-974</ispartof><rights>Springer International Publishing 2016</rights><rights>Positivity is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b974932e7ca254860457019d460b1fe99bd6c27bfd5d88eeea908125b80ab253</citedby><cites>FETCH-LOGICAL-c316t-b974932e7ca254860457019d460b1fe99bd6c27bfd5d88eeea908125b80ab253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-016-0446-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-016-0446-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Deng, Y.</creatorcontrib><creatorcontrib>O’Brien, M.</creatorcontrib><creatorcontrib>Troitsky, V. G.</creatorcontrib><title>Unbounded norm convergence in Banach lattices</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>A net
(
x
α
)
in a vector lattice
X
is unbounded order convergent to
x
∈
X
if
|
x
α
-
x
|
∧
u
converges to 0 in order for all
u
∈
X
+
. This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to general vector lattices. In this paper, we study a variation of this convergence for Banach lattices. A net
(
x
α
)
in a Banach lattice
X
is unbounded norm convergent to
x
if
for all
u
∈
X
+
. We show that this convergence may be viewed as a generalization of convergence in measure. We also investigate its relationship with other convergences.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Convergence</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Lattices (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><subject>Studies</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRvuHDu2R6j4kiqxlNmyHaekap1ip0j8e1yFgYVb7ob3eU96CLlGuEUAeZexjKSADQXOG6pPyAyFZFQzhaflrpWgyDQ7Jxc5bwAKxWFG6Ht0wyG2oa3ikHaVH-JXSOsQfaj6WD3YaP1HtbXj2PuQL8lZZ7c5XP3uOVk9Pa4WL3T59vy6uF9SX2MzUqcl1zUL0lsmuGqACwmoW96Awy5o7drGM-m6VrRKhRCsBoVMOAXWMVHPyc1Uu0_D5yHk0WyGQ4rlo0FdI9YctCopnFI-DTmn0Jl96nc2fRsEc5RiJimmSDFHKUYXhk1MLtm4DulP87_QD6gLYpE</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Deng, Y.</creator><creator>O’Brien, M.</creator><creator>Troitsky, V. G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170901</creationdate><title>Unbounded norm convergence in Banach lattices</title><author>Deng, Y. ; O’Brien, M. ; Troitsky, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b974932e7ca254860457019d460b1fe99bd6c27bfd5d88eeea908125b80ab253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Convergence</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Lattices (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Y.</creatorcontrib><creatorcontrib>O’Brien, M.</creatorcontrib><creatorcontrib>Troitsky, V. G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Y.</au><au>O’Brien, M.</au><au>Troitsky, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbounded norm convergence in Banach lattices</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>21</volume><issue>3</issue><spage>963</spage><epage>974</epage><pages>963-974</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>A net
(
x
α
)
in a vector lattice
X
is unbounded order convergent to
x
∈
X
if
|
x
α
-
x
|
∧
u
converges to 0 in order for all
u
∈
X
+
. This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to general vector lattices. In this paper, we study a variation of this convergence for Banach lattices. A net
(
x
α
)
in a Banach lattice
X
is unbounded norm convergent to
x
if
for all
u
∈
X
+
. We show that this convergence may be viewed as a generalization of convergence in measure. We also investigate its relationship with other convergences.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-016-0446-9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1292 |
ispartof | Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2017-09, Vol.21 (3), p.963-974 |
issn | 1385-1292 1572-9281 |
language | eng |
recordid | cdi_proquest_journals_1931134098 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Calculus of Variations and Optimal Control Optimization Convergence Econometrics Fourier Analysis Lattices (mathematics) Mathematics Mathematics and Statistics Operator Theory Potential Theory Studies |
title | Unbounded norm convergence in Banach lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbounded%20norm%20convergence%20in%20Banach%20lattices&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Deng,%20Y.&rft.date=2017-09-01&rft.volume=21&rft.issue=3&rft.spage=963&rft.epage=974&rft.pages=963-974&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-016-0446-9&rft_dat=%3Cproquest_cross%3E1931134098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931134098&rft_id=info:pmid/&rfr_iscdi=true |