Prediction of Lagrangian dispersion of fluid particles in isotropic turbulent flows using large-eddy simulation method

The single-, two- and multi-particle dispersions in isotropic turbulent flows are investigated using the direct numerical simulation (DNS), filtered DNS (FDNS) and large-eddy simulation (LES) with a spectral eddy viscosity subgrid scale (SGS) model. The contributions of filtering operation and SGS m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2017-09, Vol.228 (9), p.3203-3222
Hauptverfasser: Zhou, Zhideng, Chen, Jincai, Jin, Guodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3222
container_issue 9
container_start_page 3203
container_title Acta mechanica
container_volume 228
creator Zhou, Zhideng
Chen, Jincai
Jin, Guodong
description The single-, two- and multi-particle dispersions in isotropic turbulent flows are investigated using the direct numerical simulation (DNS), filtered DNS (FDNS) and large-eddy simulation (LES) with a spectral eddy viscosity subgrid scale (SGS) model. The contributions of filtering operation and SGS model to the dispersions are separately studied by comparing the statistics obtained from the three methods. The missing SGS motions in LES can be observed to significantly hinder two-particle and four-particle dispersions if the initial separations are less than or comparable to the filter width. A theoretical analysis of the non-monotonic behavior at short time of the one-time, two-point Lagrangian velocity correlation functions with large initial separations based on the Taylor expansion and the Kolmogorov similarity theory is derived, and the Reynolds number effect on the performance of the spectral eddy viscosity SGS model is also investigated. The results show that the SGS model used performs better with increasing Reynolds numbers. It is concluded that the particle SGS model is needed to be developed to correctly capture the Lagrangian two- and multi-point dispersion statistics of fluid particles.
doi_str_mv 10.1007/s00707-017-1877-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1930827023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930827023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-545681886043c556ce312127fb3ac4cd47f284428af9987ff4df7a63dc0d33c63</originalsourceid><addsrcrecordid>eNp1kE1PxCAQhonRxHX1B3gj8YxCoYUezcavZBM96JmwfFQ23VKBavbfy1oPXrzMZDLPO-_kBeCS4GuCMb9JpWCOMOGICM5RfQQWpCEtalrKj8ECY0xQ3XJ8Cs5S2pap4owswOdLtMbr7MMAg4Nr1UU1dF4N0Pg02ph-F66fvIGjitnr3iboB-hTyDGMXsM8xc3U2yEXLHwlOCU_dLBXsbPIGrOHye-mXv2Y7Gx-D-YcnDjVJ3vx25fg7f7udfWI1s8PT6vbNdKUNBnVrG4EEaLBjOq6brSlpCqfuw1VmmnDuKsEY5VQrm0Fd44Zx1VDjcaGUt3QJbia744xfEw2ZbkNUxyKpSQtxaLiuKKFIjOlY0gpWifH6Hcq7iXB8hCvnOOVJV55iFfWRVPNmlTYobPxz-V_Rd-1t38f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930827023</pqid></control><display><type>article</type><title>Prediction of Lagrangian dispersion of fluid particles in isotropic turbulent flows using large-eddy simulation method</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhou, Zhideng ; Chen, Jincai ; Jin, Guodong</creator><creatorcontrib>Zhou, Zhideng ; Chen, Jincai ; Jin, Guodong</creatorcontrib><description>The single-, two- and multi-particle dispersions in isotropic turbulent flows are investigated using the direct numerical simulation (DNS), filtered DNS (FDNS) and large-eddy simulation (LES) with a spectral eddy viscosity subgrid scale (SGS) model. The contributions of filtering operation and SGS model to the dispersions are separately studied by comparing the statistics obtained from the three methods. The missing SGS motions in LES can be observed to significantly hinder two-particle and four-particle dispersions if the initial separations are less than or comparable to the filter width. A theoretical analysis of the non-monotonic behavior at short time of the one-time, two-point Lagrangian velocity correlation functions with large initial separations based on the Taylor expansion and the Kolmogorov similarity theory is derived, and the Reynolds number effect on the performance of the spectral eddy viscosity SGS model is also investigated. The results show that the SGS model used performs better with increasing Reynolds numbers. It is concluded that the particle SGS model is needed to be developed to correctly capture the Lagrangian two- and multi-point dispersion statistics of fluid particles.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-017-1877-5</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Atoms &amp; subatomic particles ; Classical and Continuum Physics ; Computational fluid dynamics ; Control ; Direct numerical simulation ; Dispersions ; Dynamical Systems ; Eddy viscosity ; Engineering ; Engineering Thermodynamics ; Filtration ; Fluid dynamics ; Fluid flow ; Heat and Mass Transfer ; Large eddy simulation ; Mathematical models ; Original Paper ; Reynolds number ; Similarity theory ; Simulation ; Solid Mechanics ; Theoretical and Applied Mechanics ; Turbulence ; Velocity ; Vibration ; Vortices</subject><ispartof>Acta mechanica, 2017-09, Vol.228 (9), p.3203-3222</ispartof><rights>Springer-Verlag Wien 2017</rights><rights>Acta Mechanica is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-545681886043c556ce312127fb3ac4cd47f284428af9987ff4df7a63dc0d33c63</citedby><cites>FETCH-LOGICAL-c316t-545681886043c556ce312127fb3ac4cd47f284428af9987ff4df7a63dc0d33c63</cites><orcidid>0000-0002-1302-7881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-017-1877-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-017-1877-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhou, Zhideng</creatorcontrib><creatorcontrib>Chen, Jincai</creatorcontrib><creatorcontrib>Jin, Guodong</creatorcontrib><title>Prediction of Lagrangian dispersion of fluid particles in isotropic turbulent flows using large-eddy simulation method</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>The single-, two- and multi-particle dispersions in isotropic turbulent flows are investigated using the direct numerical simulation (DNS), filtered DNS (FDNS) and large-eddy simulation (LES) with a spectral eddy viscosity subgrid scale (SGS) model. The contributions of filtering operation and SGS model to the dispersions are separately studied by comparing the statistics obtained from the three methods. The missing SGS motions in LES can be observed to significantly hinder two-particle and four-particle dispersions if the initial separations are less than or comparable to the filter width. A theoretical analysis of the non-monotonic behavior at short time of the one-time, two-point Lagrangian velocity correlation functions with large initial separations based on the Taylor expansion and the Kolmogorov similarity theory is derived, and the Reynolds number effect on the performance of the spectral eddy viscosity SGS model is also investigated. The results show that the SGS model used performs better with increasing Reynolds numbers. It is concluded that the particle SGS model is needed to be developed to correctly capture the Lagrangian two- and multi-point dispersion statistics of fluid particles.</description><subject>Atoms &amp; subatomic particles</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Control</subject><subject>Direct numerical simulation</subject><subject>Dispersions</subject><subject>Dynamical Systems</subject><subject>Eddy viscosity</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Filtration</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heat and Mass Transfer</subject><subject>Large eddy simulation</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Reynolds number</subject><subject>Similarity theory</subject><subject>Simulation</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Vibration</subject><subject>Vortices</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1PxCAQhonRxHX1B3gj8YxCoYUezcavZBM96JmwfFQ23VKBavbfy1oPXrzMZDLPO-_kBeCS4GuCMb9JpWCOMOGICM5RfQQWpCEtalrKj8ECY0xQ3XJ8Cs5S2pap4owswOdLtMbr7MMAg4Nr1UU1dF4N0Pg02ph-F66fvIGjitnr3iboB-hTyDGMXsM8xc3U2yEXLHwlOCU_dLBXsbPIGrOHye-mXv2Y7Gx-D-YcnDjVJ3vx25fg7f7udfWI1s8PT6vbNdKUNBnVrG4EEaLBjOq6brSlpCqfuw1VmmnDuKsEY5VQrm0Fd44Zx1VDjcaGUt3QJbia744xfEw2ZbkNUxyKpSQtxaLiuKKFIjOlY0gpWifH6Hcq7iXB8hCvnOOVJV55iFfWRVPNmlTYobPxz-V_Rd-1t38f</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Zhou, Zhideng</creator><creator>Chen, Jincai</creator><creator>Jin, Guodong</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1302-7881</orcidid></search><sort><creationdate>20170901</creationdate><title>Prediction of Lagrangian dispersion of fluid particles in isotropic turbulent flows using large-eddy simulation method</title><author>Zhou, Zhideng ; Chen, Jincai ; Jin, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-545681886043c556ce312127fb3ac4cd47f284428af9987ff4df7a63dc0d33c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Control</topic><topic>Direct numerical simulation</topic><topic>Dispersions</topic><topic>Dynamical Systems</topic><topic>Eddy viscosity</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Filtration</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heat and Mass Transfer</topic><topic>Large eddy simulation</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Reynolds number</topic><topic>Similarity theory</topic><topic>Simulation</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Vibration</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhideng</creatorcontrib><creatorcontrib>Chen, Jincai</creatorcontrib><creatorcontrib>Jin, Guodong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhideng</au><au>Chen, Jincai</au><au>Jin, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Lagrangian dispersion of fluid particles in isotropic turbulent flows using large-eddy simulation method</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>228</volume><issue>9</issue><spage>3203</spage><epage>3222</epage><pages>3203-3222</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>The single-, two- and multi-particle dispersions in isotropic turbulent flows are investigated using the direct numerical simulation (DNS), filtered DNS (FDNS) and large-eddy simulation (LES) with a spectral eddy viscosity subgrid scale (SGS) model. The contributions of filtering operation and SGS model to the dispersions are separately studied by comparing the statistics obtained from the three methods. The missing SGS motions in LES can be observed to significantly hinder two-particle and four-particle dispersions if the initial separations are less than or comparable to the filter width. A theoretical analysis of the non-monotonic behavior at short time of the one-time, two-point Lagrangian velocity correlation functions with large initial separations based on the Taylor expansion and the Kolmogorov similarity theory is derived, and the Reynolds number effect on the performance of the spectral eddy viscosity SGS model is also investigated. The results show that the SGS model used performs better with increasing Reynolds numbers. It is concluded that the particle SGS model is needed to be developed to correctly capture the Lagrangian two- and multi-point dispersion statistics of fluid particles.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-017-1877-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1302-7881</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2017-09, Vol.228 (9), p.3203-3222
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_1930827023
source Springer Nature - Complete Springer Journals
subjects Atoms & subatomic particles
Classical and Continuum Physics
Computational fluid dynamics
Control
Direct numerical simulation
Dispersions
Dynamical Systems
Eddy viscosity
Engineering
Engineering Thermodynamics
Filtration
Fluid dynamics
Fluid flow
Heat and Mass Transfer
Large eddy simulation
Mathematical models
Original Paper
Reynolds number
Similarity theory
Simulation
Solid Mechanics
Theoretical and Applied Mechanics
Turbulence
Velocity
Vibration
Vortices
title Prediction of Lagrangian dispersion of fluid particles in isotropic turbulent flows using large-eddy simulation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Lagrangian%20dispersion%20of%20fluid%20particles%20in%20isotropic%20turbulent%20flows%20using%20large-eddy%20simulation%20method&rft.jtitle=Acta%20mechanica&rft.au=Zhou,%20Zhideng&rft.date=2017-09-01&rft.volume=228&rft.issue=9&rft.spage=3203&rft.epage=3222&rft.pages=3203-3222&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-017-1877-5&rft_dat=%3Cproquest_cross%3E1930827023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930827023&rft_id=info:pmid/&rfr_iscdi=true