On the approximation of the potential fields when using right rectangular prisms
ABSTRACT Due to its simplicity, stability, and efficiency, the use of right rectangular prisms is still widespread for potential field modelling and inversion. It is well known that modelling the subsurface with Cartesian grids has important consequences in terms of accuracy of the results. In this...
Gespeichert in:
Veröffentlicht in: | Geophysical Prospecting 2017-09, Vol.65 (5), p.1366-1379 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1379 |
---|---|
container_issue | 5 |
container_start_page | 1366 |
container_title | Geophysical Prospecting |
container_volume | 65 |
creator | Stefano, Michele Panepinto, Stefano |
description | ABSTRACT
Due to its simplicity, stability, and efficiency, the use of right rectangular prisms is still widespread for potential field modelling and inversion. It is well known that modelling the subsurface with Cartesian grids has important consequences in terms of accuracy of the results. In this paper, we review the main issues that geophysicists face in day‐to‐day work when trying to use right rectangular prisms for performing gravity or full tensor gravity modelling and inversions. We demonstrate the results both theoretically and through Monte Carlo simulations, also exploiting concepts from fractal geometry. We believe that the guidelines contained in this paper may suggest a good practice for the day‐to‐day work of geophysicists dealing with gravity and full tensor gravity data. |
doi_str_mv | 10.1111/1365-2478.12468 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1930771180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930771180</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3388-eb3e94096c57a2ffefdf16398589d5da81399a182eed74f8d05c3511591ed9713</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoOKdnrwHP3fKapk2OMnQKgw3Rc4jty5bRtTVpmfvvbVfx6rs8-Pi-9z5-hNwDm0E_c-CpiOIkkzOIk1RekMmfckkmjEEaSRaLa3ITwp4xzoRIJmSzrmi7Q2qaxtff7mBaV1e0tmexqVusWmdKah2WRaDHHVa0C67aUu-2u5Z6zFtTbbvSeNp4Fw7hllxZUwa8-91T8vH89L54iVbr5evicRUZzqWM8JOjSphKc5GZ2Fq0hYWUKymkKkRhJHClDMgYscgSKwsmci4AhAIsVAZ8Sh7Gu33vrw5Dq_d156v-pQbFWZYBSNa75qMr93UIHq3uWx6MP2lgesCmB0h6gKTP2PqEGBNHV-LpP7tebt7G3A-IA270</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930771180</pqid></control><display><type>article</type><title>On the approximation of the potential fields when using right rectangular prisms</title><source>Wiley Online Library All Journals</source><creator>Stefano, Michele ; Panepinto, Stefano</creator><creatorcontrib>Stefano, Michele ; Panepinto, Stefano</creatorcontrib><description>ABSTRACT
Due to its simplicity, stability, and efficiency, the use of right rectangular prisms is still widespread for potential field modelling and inversion. It is well known that modelling the subsurface with Cartesian grids has important consequences in terms of accuracy of the results. In this paper, we review the main issues that geophysicists face in day‐to‐day work when trying to use right rectangular prisms for performing gravity or full tensor gravity modelling and inversions. We demonstrate the results both theoretically and through Monte Carlo simulations, also exploiting concepts from fractal geometry. We believe that the guidelines contained in this paper may suggest a good practice for the day‐to‐day work of geophysicists dealing with gravity and full tensor gravity data.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/1365-2478.12468</identifier><language>eng</language><publisher>Houten: Wiley Subscription Services, Inc</publisher><subject>Approximation ; Computer simulation ; Efficiency ; Fractal geometry ; Fractals ; FTG ; Geophysics ; Gravitation ; Gravity ; Gravity data ; Inversions ; Magnetic ; Magnetics ; Modelling ; Monte Carlo simulation ; Potential field ; Potential fields ; Prism ; Prisms ; Stability ; Statistical methods</subject><ispartof>Geophysical Prospecting, 2017-09, Vol.65 (5), p.1366-1379</ispartof><rights>2016 European Association of Geoscientists & Engineers</rights><rights>2017 European Association of Geoscientists & Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3388-eb3e94096c57a2ffefdf16398589d5da81399a182eed74f8d05c3511591ed9713</citedby><cites>FETCH-LOGICAL-a3388-eb3e94096c57a2ffefdf16398589d5da81399a182eed74f8d05c3511591ed9713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2478.12468$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2478.12468$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Stefano, Michele</creatorcontrib><creatorcontrib>Panepinto, Stefano</creatorcontrib><title>On the approximation of the potential fields when using right rectangular prisms</title><title>Geophysical Prospecting</title><description>ABSTRACT
Due to its simplicity, stability, and efficiency, the use of right rectangular prisms is still widespread for potential field modelling and inversion. It is well known that modelling the subsurface with Cartesian grids has important consequences in terms of accuracy of the results. In this paper, we review the main issues that geophysicists face in day‐to‐day work when trying to use right rectangular prisms for performing gravity or full tensor gravity modelling and inversions. We demonstrate the results both theoretically and through Monte Carlo simulations, also exploiting concepts from fractal geometry. We believe that the guidelines contained in this paper may suggest a good practice for the day‐to‐day work of geophysicists dealing with gravity and full tensor gravity data.</description><subject>Approximation</subject><subject>Computer simulation</subject><subject>Efficiency</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>FTG</subject><subject>Geophysics</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Gravity data</subject><subject>Inversions</subject><subject>Magnetic</subject><subject>Magnetics</subject><subject>Modelling</subject><subject>Monte Carlo simulation</subject><subject>Potential field</subject><subject>Potential fields</subject><subject>Prism</subject><subject>Prisms</subject><subject>Stability</subject><subject>Statistical methods</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUxoMoOKdnrwHP3fKapk2OMnQKgw3Rc4jty5bRtTVpmfvvbVfx6rs8-Pi-9z5-hNwDm0E_c-CpiOIkkzOIk1RekMmfckkmjEEaSRaLa3ITwp4xzoRIJmSzrmi7Q2qaxtff7mBaV1e0tmexqVusWmdKah2WRaDHHVa0C67aUu-2u5Z6zFtTbbvSeNp4Fw7hllxZUwa8-91T8vH89L54iVbr5evicRUZzqWM8JOjSphKc5GZ2Fq0hYWUKymkKkRhJHClDMgYscgSKwsmci4AhAIsVAZ8Sh7Gu33vrw5Dq_d156v-pQbFWZYBSNa75qMr93UIHq3uWx6MP2lgesCmB0h6gKTP2PqEGBNHV-LpP7tebt7G3A-IA270</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Stefano, Michele</creator><creator>Panepinto, Stefano</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>201709</creationdate><title>On the approximation of the potential fields when using right rectangular prisms</title><author>Stefano, Michele ; Panepinto, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3388-eb3e94096c57a2ffefdf16398589d5da81399a182eed74f8d05c3511591ed9713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Computer simulation</topic><topic>Efficiency</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>FTG</topic><topic>Geophysics</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Gravity data</topic><topic>Inversions</topic><topic>Magnetic</topic><topic>Magnetics</topic><topic>Modelling</topic><topic>Monte Carlo simulation</topic><topic>Potential field</topic><topic>Potential fields</topic><topic>Prism</topic><topic>Prisms</topic><topic>Stability</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefano, Michele</creatorcontrib><creatorcontrib>Panepinto, Stefano</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefano, Michele</au><au>Panepinto, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the approximation of the potential fields when using right rectangular prisms</atitle><jtitle>Geophysical Prospecting</jtitle><date>2017-09</date><risdate>2017</risdate><volume>65</volume><issue>5</issue><spage>1366</spage><epage>1379</epage><pages>1366-1379</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><abstract>ABSTRACT
Due to its simplicity, stability, and efficiency, the use of right rectangular prisms is still widespread for potential field modelling and inversion. It is well known that modelling the subsurface with Cartesian grids has important consequences in terms of accuracy of the results. In this paper, we review the main issues that geophysicists face in day‐to‐day work when trying to use right rectangular prisms for performing gravity or full tensor gravity modelling and inversions. We demonstrate the results both theoretically and through Monte Carlo simulations, also exploiting concepts from fractal geometry. We believe that the guidelines contained in this paper may suggest a good practice for the day‐to‐day work of geophysicists dealing with gravity and full tensor gravity data.</abstract><cop>Houten</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2478.12468</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-8025 |
ispartof | Geophysical Prospecting, 2017-09, Vol.65 (5), p.1366-1379 |
issn | 0016-8025 1365-2478 |
language | eng |
recordid | cdi_proquest_journals_1930771180 |
source | Wiley Online Library All Journals |
subjects | Approximation Computer simulation Efficiency Fractal geometry Fractals FTG Geophysics Gravitation Gravity Gravity data Inversions Magnetic Magnetics Modelling Monte Carlo simulation Potential field Potential fields Prism Prisms Stability Statistical methods |
title | On the approximation of the potential fields when using right rectangular prisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20approximation%20of%20the%20potential%20fields%20when%20using%20right%20rectangular%20prisms&rft.jtitle=Geophysical%20Prospecting&rft.au=Stefano,%20Michele&rft.date=2017-09&rft.volume=65&rft.issue=5&rft.spage=1366&rft.epage=1379&rft.pages=1366-1379&rft.issn=0016-8025&rft.eissn=1365-2478&rft_id=info:doi/10.1111/1365-2478.12468&rft_dat=%3Cproquest_cross%3E1930771180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930771180&rft_id=info:pmid/&rfr_iscdi=true |