On the approximation of the potential fields when using right rectangular prisms

ABSTRACT Due to its simplicity, stability, and efficiency, the use of right rectangular prisms is still widespread for potential field modelling and inversion. It is well known that modelling the subsurface with Cartesian grids has important consequences in terms of accuracy of the results. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical Prospecting 2017-09, Vol.65 (5), p.1366-1379
Hauptverfasser: Stefano, Michele, Panepinto, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1379
container_issue 5
container_start_page 1366
container_title Geophysical Prospecting
container_volume 65
creator Stefano, Michele
Panepinto, Stefano
description ABSTRACT Due to its simplicity, stability, and efficiency, the use of right rectangular prisms is still widespread for potential field modelling and inversion. It is well known that modelling the subsurface with Cartesian grids has important consequences in terms of accuracy of the results. In this paper, we review the main issues that geophysicists face in day‐to‐day work when trying to use right rectangular prisms for performing gravity or full tensor gravity modelling and inversions. We demonstrate the results both theoretically and through Monte Carlo simulations, also exploiting concepts from fractal geometry. We believe that the guidelines contained in this paper may suggest a good practice for the day‐to‐day work of geophysicists dealing with gravity and full tensor gravity data.
doi_str_mv 10.1111/1365-2478.12468
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1930771180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930771180</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3388-eb3e94096c57a2ffefdf16398589d5da81399a182eed74f8d05c3511591ed9713</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoOKdnrwHP3fKapk2OMnQKgw3Rc4jty5bRtTVpmfvvbVfx6rs8-Pi-9z5-hNwDm0E_c-CpiOIkkzOIk1RekMmfckkmjEEaSRaLa3ITwp4xzoRIJmSzrmi7Q2qaxtff7mBaV1e0tmexqVusWmdKah2WRaDHHVa0C67aUu-2u5Z6zFtTbbvSeNp4Fw7hllxZUwa8-91T8vH89L54iVbr5evicRUZzqWM8JOjSphKc5GZ2Fq0hYWUKymkKkRhJHClDMgYscgSKwsmci4AhAIsVAZ8Sh7Gu33vrw5Dq_d156v-pQbFWZYBSNa75qMr93UIHq3uWx6MP2lgesCmB0h6gKTP2PqEGBNHV-LpP7tebt7G3A-IA270</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930771180</pqid></control><display><type>article</type><title>On the approximation of the potential fields when using right rectangular prisms</title><source>Wiley Online Library All Journals</source><creator>Stefano, Michele ; Panepinto, Stefano</creator><creatorcontrib>Stefano, Michele ; Panepinto, Stefano</creatorcontrib><description>ABSTRACT Due to its simplicity, stability, and efficiency, the use of right rectangular prisms is still widespread for potential field modelling and inversion. It is well known that modelling the subsurface with Cartesian grids has important consequences in terms of accuracy of the results. In this paper, we review the main issues that geophysicists face in day‐to‐day work when trying to use right rectangular prisms for performing gravity or full tensor gravity modelling and inversions. We demonstrate the results both theoretically and through Monte Carlo simulations, also exploiting concepts from fractal geometry. We believe that the guidelines contained in this paper may suggest a good practice for the day‐to‐day work of geophysicists dealing with gravity and full tensor gravity data.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/1365-2478.12468</identifier><language>eng</language><publisher>Houten: Wiley Subscription Services, Inc</publisher><subject>Approximation ; Computer simulation ; Efficiency ; Fractal geometry ; Fractals ; FTG ; Geophysics ; Gravitation ; Gravity ; Gravity data ; Inversions ; Magnetic ; Magnetics ; Modelling ; Monte Carlo simulation ; Potential field ; Potential fields ; Prism ; Prisms ; Stability ; Statistical methods</subject><ispartof>Geophysical Prospecting, 2017-09, Vol.65 (5), p.1366-1379</ispartof><rights>2016 European Association of Geoscientists &amp; Engineers</rights><rights>2017 European Association of Geoscientists &amp; Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3388-eb3e94096c57a2ffefdf16398589d5da81399a182eed74f8d05c3511591ed9713</citedby><cites>FETCH-LOGICAL-a3388-eb3e94096c57a2ffefdf16398589d5da81399a182eed74f8d05c3511591ed9713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2478.12468$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2478.12468$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Stefano, Michele</creatorcontrib><creatorcontrib>Panepinto, Stefano</creatorcontrib><title>On the approximation of the potential fields when using right rectangular prisms</title><title>Geophysical Prospecting</title><description>ABSTRACT Due to its simplicity, stability, and efficiency, the use of right rectangular prisms is still widespread for potential field modelling and inversion. It is well known that modelling the subsurface with Cartesian grids has important consequences in terms of accuracy of the results. In this paper, we review the main issues that geophysicists face in day‐to‐day work when trying to use right rectangular prisms for performing gravity or full tensor gravity modelling and inversions. We demonstrate the results both theoretically and through Monte Carlo simulations, also exploiting concepts from fractal geometry. We believe that the guidelines contained in this paper may suggest a good practice for the day‐to‐day work of geophysicists dealing with gravity and full tensor gravity data.</description><subject>Approximation</subject><subject>Computer simulation</subject><subject>Efficiency</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>FTG</subject><subject>Geophysics</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Gravity data</subject><subject>Inversions</subject><subject>Magnetic</subject><subject>Magnetics</subject><subject>Modelling</subject><subject>Monte Carlo simulation</subject><subject>Potential field</subject><subject>Potential fields</subject><subject>Prism</subject><subject>Prisms</subject><subject>Stability</subject><subject>Statistical methods</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUxoMoOKdnrwHP3fKapk2OMnQKgw3Rc4jty5bRtTVpmfvvbVfx6rs8-Pi-9z5-hNwDm0E_c-CpiOIkkzOIk1RekMmfckkmjEEaSRaLa3ITwp4xzoRIJmSzrmi7Q2qaxtff7mBaV1e0tmexqVusWmdKah2WRaDHHVa0C67aUu-2u5Z6zFtTbbvSeNp4Fw7hllxZUwa8-91T8vH89L54iVbr5evicRUZzqWM8JOjSphKc5GZ2Fq0hYWUKymkKkRhJHClDMgYscgSKwsmci4AhAIsVAZ8Sh7Gu33vrw5Dq_d156v-pQbFWZYBSNa75qMr93UIHq3uWx6MP2lgesCmB0h6gKTP2PqEGBNHV-LpP7tebt7G3A-IA270</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Stefano, Michele</creator><creator>Panepinto, Stefano</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>201709</creationdate><title>On the approximation of the potential fields when using right rectangular prisms</title><author>Stefano, Michele ; Panepinto, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3388-eb3e94096c57a2ffefdf16398589d5da81399a182eed74f8d05c3511591ed9713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Computer simulation</topic><topic>Efficiency</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>FTG</topic><topic>Geophysics</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Gravity data</topic><topic>Inversions</topic><topic>Magnetic</topic><topic>Magnetics</topic><topic>Modelling</topic><topic>Monte Carlo simulation</topic><topic>Potential field</topic><topic>Potential fields</topic><topic>Prism</topic><topic>Prisms</topic><topic>Stability</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefano, Michele</creatorcontrib><creatorcontrib>Panepinto, Stefano</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefano, Michele</au><au>Panepinto, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the approximation of the potential fields when using right rectangular prisms</atitle><jtitle>Geophysical Prospecting</jtitle><date>2017-09</date><risdate>2017</risdate><volume>65</volume><issue>5</issue><spage>1366</spage><epage>1379</epage><pages>1366-1379</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><abstract>ABSTRACT Due to its simplicity, stability, and efficiency, the use of right rectangular prisms is still widespread for potential field modelling and inversion. It is well known that modelling the subsurface with Cartesian grids has important consequences in terms of accuracy of the results. In this paper, we review the main issues that geophysicists face in day‐to‐day work when trying to use right rectangular prisms for performing gravity or full tensor gravity modelling and inversions. We demonstrate the results both theoretically and through Monte Carlo simulations, also exploiting concepts from fractal geometry. We believe that the guidelines contained in this paper may suggest a good practice for the day‐to‐day work of geophysicists dealing with gravity and full tensor gravity data.</abstract><cop>Houten</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2478.12468</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-8025
ispartof Geophysical Prospecting, 2017-09, Vol.65 (5), p.1366-1379
issn 0016-8025
1365-2478
language eng
recordid cdi_proquest_journals_1930771180
source Wiley Online Library All Journals
subjects Approximation
Computer simulation
Efficiency
Fractal geometry
Fractals
FTG
Geophysics
Gravitation
Gravity
Gravity data
Inversions
Magnetic
Magnetics
Modelling
Monte Carlo simulation
Potential field
Potential fields
Prism
Prisms
Stability
Statistical methods
title On the approximation of the potential fields when using right rectangular prisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20approximation%20of%20the%20potential%20fields%20when%20using%20right%20rectangular%20prisms&rft.jtitle=Geophysical%20Prospecting&rft.au=Stefano,%20Michele&rft.date=2017-09&rft.volume=65&rft.issue=5&rft.spage=1366&rft.epage=1379&rft.pages=1366-1379&rft.issn=0016-8025&rft.eissn=1365-2478&rft_id=info:doi/10.1111/1365-2478.12468&rft_dat=%3Cproquest_cross%3E1930771180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930771180&rft_id=info:pmid/&rfr_iscdi=true