How does the core sit inside the mantle?

The k‐core, defined as the maximal subgraph of minimum degree at least k, of the random graph G(n,p) has been studied extensively. In a landmark paper Pittel, Wormald and Spencer [J Combin Theory Ser B 67 (1996), 111–151] determined the threshold dk for the appearance of an extensive k‐core. The aim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2017-10, Vol.51 (3), p.459-482
Hauptverfasser: Coja‐Oghlan, Amin, Cooley, Oliver, Kang, Mihyun, Skubch, Kathrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue 3
container_start_page 459
container_title Random structures & algorithms
container_volume 51
creator Coja‐Oghlan, Amin
Cooley, Oliver
Kang, Mihyun
Skubch, Kathrin
description The k‐core, defined as the maximal subgraph of minimum degree at least k, of the random graph G(n,p) has been studied extensively. In a landmark paper Pittel, Wormald and Spencer [J Combin Theory Ser B 67 (1996), 111–151] determined the threshold dk for the appearance of an extensive k‐core. The aim of the present paper is to describe how the k‐core is “embedded” into the random graph in the following sense. Let k≥3 and fix d=np>dk. Colour each vertex that belongs to the k‐core of G(n,p) in black and all remaining vertices in white. Here we derive a multi‐type branching process that describes the local structure of this coloured random object as n tends to infinity. This generalises prior results on, e.g., the internal structure of the k‐core. In the physics literature it was suggested to characterize the core by means of a message passing algorithm called Warning Propagation. Ibrahimi, Kanoria, Kraning and Montanari [Ann Appl Probab 25 (2015), 2743–2808] used this characterization to describe the 2‐core of random hypergraphs. To derive our main result we use a similar approach. A key observation is that a bounded number of iterations of this algorithm is enough to give a good approximation of the k‐core. Based on this the study of the k‐core reduces to the analysis of Warning Propagation on a suitable Galton‐Watson tree. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 459–482, 2017
doi_str_mv 10.1002/rsa.20712
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1930361813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930361813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-163a116911c7f4bd5af3a79ff99f7779add6ccb33124ba394eb6301be37b141d3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFYP_oOAFz2k3dlZs9mTlFKtUBD8OC_7iSlpUndTSv-9aePV0wzDM-8LDyG3QCdAKZvGpCeMCmBnZARUljnjUJ4fd85yWSK7JFcprSmlAhmOyP2y3Weu9Snrvn1m2-izVHVZ1aTK-dNto5uu9k_X5CLoOvmbvzkmX8-Lz_kyX729vM5nq9wyKVgOBWqAQgJYEbhxjzqgFjIEKYMQQmrnCmsNIjBuNEruTYEUjEdhgIPDMbkbcrex_dn51Kl1u4tNX6lAIsUCSsCeehgoG9uUog9qG6uNjgcFVB1FqF6EOono2enA7qvaH_4H1fvHbPj4BYnBXLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930361813</pqid></control><display><type>article</type><title>How does the core sit inside the mantle?</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Coja‐Oghlan, Amin ; Cooley, Oliver ; Kang, Mihyun ; Skubch, Kathrin</creator><creatorcontrib>Coja‐Oghlan, Amin ; Cooley, Oliver ; Kang, Mihyun ; Skubch, Kathrin</creatorcontrib><description>The k‐core, defined as the maximal subgraph of minimum degree at least k, of the random graph G(n,p) has been studied extensively. In a landmark paper Pittel, Wormald and Spencer [J Combin Theory Ser B 67 (1996), 111–151] determined the threshold dk for the appearance of an extensive k‐core. The aim of the present paper is to describe how the k‐core is “embedded” into the random graph in the following sense. Let k≥3 and fix d=np&gt;dk. Colour each vertex that belongs to the k‐core of G(n,p) in black and all remaining vertices in white. Here we derive a multi‐type branching process that describes the local structure of this coloured random object as n tends to infinity. This generalises prior results on, e.g., the internal structure of the k‐core. In the physics literature it was suggested to characterize the core by means of a message passing algorithm called Warning Propagation. Ibrahimi, Kanoria, Kraning and Montanari [Ann Appl Probab 25 (2015), 2743–2808] used this characterization to describe the 2‐core of random hypergraphs. To derive our main result we use a similar approach. A key observation is that a bounded number of iterations of this algorithm is enough to give a good approximation of the k‐core. Based on this the study of the k‐core reduces to the analysis of Warning Propagation on a suitable Galton‐Watson tree. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 459–482, 2017</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20712</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>branching process ; Infinity ; k‐core ; local weak convergence ; Mantle ; Message passing ; Propagation ; Warning ; Warning Propagation</subject><ispartof>Random structures &amp; algorithms, 2017-10, Vol.51 (3), p.459-482</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-163a116911c7f4bd5af3a79ff99f7779add6ccb33124ba394eb6301be37b141d3</citedby><cites>FETCH-LOGICAL-c2972-163a116911c7f4bd5af3a79ff99f7779add6ccb33124ba394eb6301be37b141d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.20712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.20712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Coja‐Oghlan, Amin</creatorcontrib><creatorcontrib>Cooley, Oliver</creatorcontrib><creatorcontrib>Kang, Mihyun</creatorcontrib><creatorcontrib>Skubch, Kathrin</creatorcontrib><title>How does the core sit inside the mantle?</title><title>Random structures &amp; algorithms</title><description>The k‐core, defined as the maximal subgraph of minimum degree at least k, of the random graph G(n,p) has been studied extensively. In a landmark paper Pittel, Wormald and Spencer [J Combin Theory Ser B 67 (1996), 111–151] determined the threshold dk for the appearance of an extensive k‐core. The aim of the present paper is to describe how the k‐core is “embedded” into the random graph in the following sense. Let k≥3 and fix d=np&gt;dk. Colour each vertex that belongs to the k‐core of G(n,p) in black and all remaining vertices in white. Here we derive a multi‐type branching process that describes the local structure of this coloured random object as n tends to infinity. This generalises prior results on, e.g., the internal structure of the k‐core. In the physics literature it was suggested to characterize the core by means of a message passing algorithm called Warning Propagation. Ibrahimi, Kanoria, Kraning and Montanari [Ann Appl Probab 25 (2015), 2743–2808] used this characterization to describe the 2‐core of random hypergraphs. To derive our main result we use a similar approach. A key observation is that a bounded number of iterations of this algorithm is enough to give a good approximation of the k‐core. Based on this the study of the k‐core reduces to the analysis of Warning Propagation on a suitable Galton‐Watson tree. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 459–482, 2017</description><subject>branching process</subject><subject>Infinity</subject><subject>k‐core</subject><subject>local weak convergence</subject><subject>Mantle</subject><subject>Message passing</subject><subject>Propagation</subject><subject>Warning</subject><subject>Warning Propagation</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFYP_oOAFz2k3dlZs9mTlFKtUBD8OC_7iSlpUndTSv-9aePV0wzDM-8LDyG3QCdAKZvGpCeMCmBnZARUljnjUJ4fd85yWSK7JFcprSmlAhmOyP2y3Weu9Snrvn1m2-izVHVZ1aTK-dNto5uu9k_X5CLoOvmbvzkmX8-Lz_kyX729vM5nq9wyKVgOBWqAQgJYEbhxjzqgFjIEKYMQQmrnCmsNIjBuNEruTYEUjEdhgIPDMbkbcrex_dn51Kl1u4tNX6lAIsUCSsCeehgoG9uUog9qG6uNjgcFVB1FqF6EOono2enA7qvaH_4H1fvHbPj4BYnBXLs</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Coja‐Oghlan, Amin</creator><creator>Cooley, Oliver</creator><creator>Kang, Mihyun</creator><creator>Skubch, Kathrin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201710</creationdate><title>How does the core sit inside the mantle?</title><author>Coja‐Oghlan, Amin ; Cooley, Oliver ; Kang, Mihyun ; Skubch, Kathrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-163a116911c7f4bd5af3a79ff99f7779add6ccb33124ba394eb6301be37b141d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>branching process</topic><topic>Infinity</topic><topic>k‐core</topic><topic>local weak convergence</topic><topic>Mantle</topic><topic>Message passing</topic><topic>Propagation</topic><topic>Warning</topic><topic>Warning Propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coja‐Oghlan, Amin</creatorcontrib><creatorcontrib>Cooley, Oliver</creatorcontrib><creatorcontrib>Kang, Mihyun</creatorcontrib><creatorcontrib>Skubch, Kathrin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coja‐Oghlan, Amin</au><au>Cooley, Oliver</au><au>Kang, Mihyun</au><au>Skubch, Kathrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How does the core sit inside the mantle?</atitle><jtitle>Random structures &amp; algorithms</jtitle><date>2017-10</date><risdate>2017</risdate><volume>51</volume><issue>3</issue><spage>459</spage><epage>482</epage><pages>459-482</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>The k‐core, defined as the maximal subgraph of minimum degree at least k, of the random graph G(n,p) has been studied extensively. In a landmark paper Pittel, Wormald and Spencer [J Combin Theory Ser B 67 (1996), 111–151] determined the threshold dk for the appearance of an extensive k‐core. The aim of the present paper is to describe how the k‐core is “embedded” into the random graph in the following sense. Let k≥3 and fix d=np&gt;dk. Colour each vertex that belongs to the k‐core of G(n,p) in black and all remaining vertices in white. Here we derive a multi‐type branching process that describes the local structure of this coloured random object as n tends to infinity. This generalises prior results on, e.g., the internal structure of the k‐core. In the physics literature it was suggested to characterize the core by means of a message passing algorithm called Warning Propagation. Ibrahimi, Kanoria, Kraning and Montanari [Ann Appl Probab 25 (2015), 2743–2808] used this characterization to describe the 2‐core of random hypergraphs. To derive our main result we use a similar approach. A key observation is that a bounded number of iterations of this algorithm is enough to give a good approximation of the k‐core. Based on this the study of the k‐core reduces to the analysis of Warning Propagation on a suitable Galton‐Watson tree. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 459–482, 2017</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rsa.20712</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2017-10, Vol.51 (3), p.459-482
issn 1042-9832
1098-2418
language eng
recordid cdi_proquest_journals_1930361813
source Wiley Online Library - AutoHoldings Journals
subjects branching process
Infinity
k‐core
local weak convergence
Mantle
Message passing
Propagation
Warning
Warning Propagation
title How does the core sit inside the mantle?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20does%20the%20core%20sit%20inside%20the%20mantle?&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Coja%E2%80%90Oghlan,%20Amin&rft.date=2017-10&rft.volume=51&rft.issue=3&rft.spage=459&rft.epage=482&rft.pages=459-482&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20712&rft_dat=%3Cproquest_cross%3E1930361813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930361813&rft_id=info:pmid/&rfr_iscdi=true