Improving the performance of organic light-emitting devices by incorporating non-doped TCNQ as electron buffer layer
The performance of organic light-emitting devices (OLEDs) is improved by inserting non-doped tetracyanoquinodimethane (TCNQ) electron buffer layer (EBL) between 4,7-diphnenyl-1,10-phe-nanthroline (Bphen) electron transport layer (ETL) and LiF/Al cathode. By optimizing the thickness of TCNQ layer, we...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2017-09, Vol.28 (17), p.12761-12767 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12767 |
---|---|
container_issue | 17 |
container_start_page | 12761 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 28 |
creator | Zhang, Juan Xin, Liwen Gao, Jian Liu, Yang Rui, Hongsong Lin, Xin Hua, Yulin Wu, Xiaoming Yin, Shougen |
description | The performance of organic light-emitting devices (OLEDs) is improved by inserting non-doped tetracyanoquinodimethane (TCNQ) electron buffer layer (EBL) between 4,7-diphnenyl-1,10-phe-nanthroline (Bphen) electron transport layer (ETL) and LiF/Al cathode. By optimizing the thickness of TCNQ layer, we find that the device with 6 nm TCNQ buffer layer can achieve the best performance. The maximum luminance, current efficiency, power efficiency and half-lifetime of the optimal device are increased by 27.32, 51.70, 127.55, and 73.89%, respectively, compared with those of the control device without TCNQ buffer layer. This improvement can be attributed to that the insertion of non-doped TCNQ buffer layer which is a simple approach can enhance the electron injection and operational stability of the devices. Moreover, we have carried out the tests of the atomic force microscope (AFM), scanning electron microscopy (SEM) and Kelvin probe to explore the effect of insering TCNQ. These tests results further verify that TCNQ layer not only smooth the surface of the films but also improve the electron injection and transport characteristics. As a result, the performances of the OLEDs can be effectively improved. |
doi_str_mv | 10.1007/s10854-017-7103-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1930050196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930050196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a1727a4816bce76832857bddd1d5b6f0c77211934625a72c1ef2b16319af0dff3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczST7G62Ryl-FEQRKngL2exku2WbrMm20H_v1nrw4mkO8zzvMC8h18BvgXN1l4CXecY4KKaASyZPyARyJVlWis9TMuGzXLEsF-KcXKS05pwXmSwnZFhs-hh2rW_osELaY3Qhboy3SIOjITbGt5Z2bbMaGG7aYTiQNe5ai4lWe9p6G2IfovlZ-OBZHXqs6XL--k5NotihHWLwtNo6h5F2Zo_xkpw50yW8-p1T8vH4sJw_s5e3p8X8_oVZCcXADCihTFZCUVlURSlFmauqrmuo86pw3ColAGYyK0RulLCATlRQSJgZx2vn5JTcHHPHF7-2mAa9Dtvox5N61DjPOcyKkYIjZWNIKaLTfWw3Ju41cH0oVx_L1WO5-lCulqMjjk4aWd9g_JP8r_QNCNV9xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930050196</pqid></control><display><type>article</type><title>Improving the performance of organic light-emitting devices by incorporating non-doped TCNQ as electron buffer layer</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Juan ; Xin, Liwen ; Gao, Jian ; Liu, Yang ; Rui, Hongsong ; Lin, Xin ; Hua, Yulin ; Wu, Xiaoming ; Yin, Shougen</creator><creatorcontrib>Zhang, Juan ; Xin, Liwen ; Gao, Jian ; Liu, Yang ; Rui, Hongsong ; Lin, Xin ; Hua, Yulin ; Wu, Xiaoming ; Yin, Shougen</creatorcontrib><description>The performance of organic light-emitting devices (OLEDs) is improved by inserting non-doped tetracyanoquinodimethane (TCNQ) electron buffer layer (EBL) between 4,7-diphnenyl-1,10-phe-nanthroline (Bphen) electron transport layer (ETL) and LiF/Al cathode. By optimizing the thickness of TCNQ layer, we find that the device with 6 nm TCNQ buffer layer can achieve the best performance. The maximum luminance, current efficiency, power efficiency and half-lifetime of the optimal device are increased by 27.32, 51.70, 127.55, and 73.89%, respectively, compared with those of the control device without TCNQ buffer layer. This improvement can be attributed to that the insertion of non-doped TCNQ buffer layer which is a simple approach can enhance the electron injection and operational stability of the devices. Moreover, we have carried out the tests of the atomic force microscope (AFM), scanning electron microscopy (SEM) and Kelvin probe to explore the effect of insering TCNQ. These tests results further verify that TCNQ layer not only smooth the surface of the films but also improve the electron injection and transport characteristics. As a result, the performances of the OLEDs can be effectively improved.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-017-7103-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atomic force microscopes ; Atomic force microscopy ; Buffers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Current efficiency ; Devices ; Diodes ; Electron transport ; Materials Science ; Optical and Electronic Materials ; Optimization ; Organic light emitting diodes ; Power efficiency ; Scanning electron microscopy ; Service life assessment ; Tetracyanoquinodimethane ; Thickness</subject><ispartof>Journal of materials science. Materials in electronics, 2017-09, Vol.28 (17), p.12761-12767</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a1727a4816bce76832857bddd1d5b6f0c77211934625a72c1ef2b16319af0dff3</citedby><cites>FETCH-LOGICAL-c316t-a1727a4816bce76832857bddd1d5b6f0c77211934625a72c1ef2b16319af0dff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-017-7103-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-017-7103-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Xin, Liwen</creatorcontrib><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Rui, Hongsong</creatorcontrib><creatorcontrib>Lin, Xin</creatorcontrib><creatorcontrib>Hua, Yulin</creatorcontrib><creatorcontrib>Wu, Xiaoming</creatorcontrib><creatorcontrib>Yin, Shougen</creatorcontrib><title>Improving the performance of organic light-emitting devices by incorporating non-doped TCNQ as electron buffer layer</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The performance of organic light-emitting devices (OLEDs) is improved by inserting non-doped tetracyanoquinodimethane (TCNQ) electron buffer layer (EBL) between 4,7-diphnenyl-1,10-phe-nanthroline (Bphen) electron transport layer (ETL) and LiF/Al cathode. By optimizing the thickness of TCNQ layer, we find that the device with 6 nm TCNQ buffer layer can achieve the best performance. The maximum luminance, current efficiency, power efficiency and half-lifetime of the optimal device are increased by 27.32, 51.70, 127.55, and 73.89%, respectively, compared with those of the control device without TCNQ buffer layer. This improvement can be attributed to that the insertion of non-doped TCNQ buffer layer which is a simple approach can enhance the electron injection and operational stability of the devices. Moreover, we have carried out the tests of the atomic force microscope (AFM), scanning electron microscopy (SEM) and Kelvin probe to explore the effect of insering TCNQ. These tests results further verify that TCNQ layer not only smooth the surface of the films but also improve the electron injection and transport characteristics. As a result, the performances of the OLEDs can be effectively improved.</description><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Buffers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Current efficiency</subject><subject>Devices</subject><subject>Diodes</subject><subject>Electron transport</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optimization</subject><subject>Organic light emitting diodes</subject><subject>Power efficiency</subject><subject>Scanning electron microscopy</subject><subject>Service life assessment</subject><subject>Tetracyanoquinodimethane</subject><subject>Thickness</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczST7G62Ryl-FEQRKngL2exku2WbrMm20H_v1nrw4mkO8zzvMC8h18BvgXN1l4CXecY4KKaASyZPyARyJVlWis9TMuGzXLEsF-KcXKS05pwXmSwnZFhs-hh2rW_osELaY3Qhboy3SIOjITbGt5Z2bbMaGG7aYTiQNe5ai4lWe9p6G2IfovlZ-OBZHXqs6XL--k5NotihHWLwtNo6h5F2Zo_xkpw50yW8-p1T8vH4sJw_s5e3p8X8_oVZCcXADCihTFZCUVlURSlFmauqrmuo86pw3ColAGYyK0RulLCATlRQSJgZx2vn5JTcHHPHF7-2mAa9Dtvox5N61DjPOcyKkYIjZWNIKaLTfWw3Ju41cH0oVx_L1WO5-lCulqMjjk4aWd9g_JP8r_QNCNV9xA</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Zhang, Juan</creator><creator>Xin, Liwen</creator><creator>Gao, Jian</creator><creator>Liu, Yang</creator><creator>Rui, Hongsong</creator><creator>Lin, Xin</creator><creator>Hua, Yulin</creator><creator>Wu, Xiaoming</creator><creator>Yin, Shougen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20170901</creationdate><title>Improving the performance of organic light-emitting devices by incorporating non-doped TCNQ as electron buffer layer</title><author>Zhang, Juan ; Xin, Liwen ; Gao, Jian ; Liu, Yang ; Rui, Hongsong ; Lin, Xin ; Hua, Yulin ; Wu, Xiaoming ; Yin, Shougen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a1727a4816bce76832857bddd1d5b6f0c77211934625a72c1ef2b16319af0dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Buffers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Current efficiency</topic><topic>Devices</topic><topic>Diodes</topic><topic>Electron transport</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optimization</topic><topic>Organic light emitting diodes</topic><topic>Power efficiency</topic><topic>Scanning electron microscopy</topic><topic>Service life assessment</topic><topic>Tetracyanoquinodimethane</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Xin, Liwen</creatorcontrib><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Rui, Hongsong</creatorcontrib><creatorcontrib>Lin, Xin</creatorcontrib><creatorcontrib>Hua, Yulin</creatorcontrib><creatorcontrib>Wu, Xiaoming</creatorcontrib><creatorcontrib>Yin, Shougen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Juan</au><au>Xin, Liwen</au><au>Gao, Jian</au><au>Liu, Yang</au><au>Rui, Hongsong</au><au>Lin, Xin</au><au>Hua, Yulin</au><au>Wu, Xiaoming</au><au>Yin, Shougen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the performance of organic light-emitting devices by incorporating non-doped TCNQ as electron buffer layer</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>28</volume><issue>17</issue><spage>12761</spage><epage>12767</epage><pages>12761-12767</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The performance of organic light-emitting devices (OLEDs) is improved by inserting non-doped tetracyanoquinodimethane (TCNQ) electron buffer layer (EBL) between 4,7-diphnenyl-1,10-phe-nanthroline (Bphen) electron transport layer (ETL) and LiF/Al cathode. By optimizing the thickness of TCNQ layer, we find that the device with 6 nm TCNQ buffer layer can achieve the best performance. The maximum luminance, current efficiency, power efficiency and half-lifetime of the optimal device are increased by 27.32, 51.70, 127.55, and 73.89%, respectively, compared with those of the control device without TCNQ buffer layer. This improvement can be attributed to that the insertion of non-doped TCNQ buffer layer which is a simple approach can enhance the electron injection and operational stability of the devices. Moreover, we have carried out the tests of the atomic force microscope (AFM), scanning electron microscopy (SEM) and Kelvin probe to explore the effect of insering TCNQ. These tests results further verify that TCNQ layer not only smooth the surface of the films but also improve the electron injection and transport characteristics. As a result, the performances of the OLEDs can be effectively improved.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-017-7103-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2017-09, Vol.28 (17), p.12761-12767 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_1930050196 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atomic force microscopes Atomic force microscopy Buffers Characterization and Evaluation of Materials Chemistry and Materials Science Current efficiency Devices Diodes Electron transport Materials Science Optical and Electronic Materials Optimization Organic light emitting diodes Power efficiency Scanning electron microscopy Service life assessment Tetracyanoquinodimethane Thickness |
title | Improving the performance of organic light-emitting devices by incorporating non-doped TCNQ as electron buffer layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20performance%20of%20organic%20light-emitting%20devices%20by%20incorporating%20non-doped%20TCNQ%20as%20electron%20buffer%20layer&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhang,%20Juan&rft.date=2017-09-01&rft.volume=28&rft.issue=17&rft.spage=12761&rft.epage=12767&rft.pages=12761-12767&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-017-7103-3&rft_dat=%3Cproquest_cross%3E1930050196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930050196&rft_id=info:pmid/&rfr_iscdi=true |