PID control system for biogas desulfurization under anoxic conditions

BACKGROUND A high H2S elimination capacity has been achieved by anoxic biotrickling filters but accurate control of the nitrate dosage is required. Different control strategies have been used in biotrickling filters but proportional‐integral‐derivative (PID) control studies have not been reported to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical technology and biotechnology (1986) 2017-09, Vol.92 (9), p.2369-2375
Hauptverfasser: Brito, Javier, Almenglo, Fernando, Ramírez, Martín, Gómez, José M, Cantero, Domingo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2375
container_issue 9
container_start_page 2369
container_title Journal of chemical technology and biotechnology (1986)
container_volume 92
creator Brito, Javier
Almenglo, Fernando
Ramírez, Martín
Gómez, José M
Cantero, Domingo
description BACKGROUND A high H2S elimination capacity has been achieved by anoxic biotrickling filters but accurate control of the nitrate dosage is required. Different control strategies have been used in biotrickling filters but proportional‐integral‐derivative (PID) control studies have not been reported to date. The aim of this study was to demonstrate the stability and robustness of PID control in an anoxic biotrickling filter. RESULTS Three PID tuning methods were tested: Ziegler–Nichols, Approximate M‐constrained integral gain optimization (AMIGO), and maintained oscillation. The best results were obtained using PID control by the maintained oscillation method, where the system reached stabilization 0.41 h after the H2S inlet step. Moreover, the nitrate consumption was 15.4% lower than that without control. CONCLUSION The biotrickling filter operated with a PID control strategy proved to be highly stable and robust against the perturbations and disturbances evaluated. The control system was able to operate satisfactorily to a change in the set‐point of the outlet H2S concentrations from 25 to 200 ppmV. The desulfurized biogas could be fed directly to an internal combustion engine or solid oxide fuel cell (SOFC) equipped with a zeolite clean unit. © 2017 Society of Chemical Industry
doi_str_mv 10.1002/jctb.5243
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1929829956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929829956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-1ec9c296bb4e6671c8ac61aed5c411a19de340b38d8f36b67bd17104a9580af43</originalsourceid><addsrcrecordid>eNp1kM1KAzEYRYMoWKsL3yDgysW0-ZtMstRatVLQRV2H_I2kTCc1mcHWp7dj3br64HLu_eAAcI3RBCNEpmvbmUlJGD0BI4xkVTDO0SkYIcJFQcqqPAcXOa8RQlwQPgLzt8UDtLHtUmxg3ufOb2AdEzQhfugMnc99U_cpfOsuxBb2rfMJ6jbugh1qLgxxvgRntW6yv_q7Y_D-OF_Nnovl69NidrcsLKWMFthbaYnkxjDPeYWt0JZj7V1pGcYaS-cpQ4YKJ2rKDa-MwxVGTMtSIF0zOgY3x91tip-9z51axz61h5cKSyIFkbLkB-r2SNkUc06-VtsUNjrtFUZqsKQGS2qwdGCnR_YrNH7_P6heZqv738YP1ZtpoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929829956</pqid></control><display><type>article</type><title>PID control system for biogas desulfurization under anoxic conditions</title><source>Wiley Online Library All Journals</source><creator>Brito, Javier ; Almenglo, Fernando ; Ramírez, Martín ; Gómez, José M ; Cantero, Domingo</creator><creatorcontrib>Brito, Javier ; Almenglo, Fernando ; Ramírez, Martín ; Gómez, José M ; Cantero, Domingo</creatorcontrib><description>BACKGROUND A high H2S elimination capacity has been achieved by anoxic biotrickling filters but accurate control of the nitrate dosage is required. Different control strategies have been used in biotrickling filters but proportional‐integral‐derivative (PID) control studies have not been reported to date. The aim of this study was to demonstrate the stability and robustness of PID control in an anoxic biotrickling filter. RESULTS Three PID tuning methods were tested: Ziegler–Nichols, Approximate M‐constrained integral gain optimization (AMIGO), and maintained oscillation. The best results were obtained using PID control by the maintained oscillation method, where the system reached stabilization 0.41 h after the H2S inlet step. Moreover, the nitrate consumption was 15.4% lower than that without control. CONCLUSION The biotrickling filter operated with a PID control strategy proved to be highly stable and robust against the perturbations and disturbances evaluated. The control system was able to operate satisfactorily to a change in the set‐point of the outlet H2S concentrations from 25 to 200 ppmV. The desulfurized biogas could be fed directly to an internal combustion engine or solid oxide fuel cell (SOFC) equipped with a zeolite clean unit. © 2017 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.5243</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Anoxic conditions ; Approximation ; Biofiltration ; biofiltration of waste gases ; Biogas ; Control stability ; Control systems ; Desulfurization ; Desulfurizing ; Dosage ; energy ; environmental biotechnology ; Filters ; Fuel cells ; Fuel technology ; Hydrogen sulfide ; Internal combustion engines ; Nitrates ; Optimization ; process control ; Proportional integral derivative ; removal ; Solid oxide fuel cells ; Trickling filters ; Zeolites</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2017-09, Vol.92 (9), p.2369-2375</ispartof><rights>2017 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3343-1ec9c296bb4e6671c8ac61aed5c411a19de340b38d8f36b67bd17104a9580af43</citedby><cites>FETCH-LOGICAL-c3343-1ec9c296bb4e6671c8ac61aed5c411a19de340b38d8f36b67bd17104a9580af43</cites><orcidid>0000-0002-5929-8783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.5243$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.5243$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Brito, Javier</creatorcontrib><creatorcontrib>Almenglo, Fernando</creatorcontrib><creatorcontrib>Ramírez, Martín</creatorcontrib><creatorcontrib>Gómez, José M</creatorcontrib><creatorcontrib>Cantero, Domingo</creatorcontrib><title>PID control system for biogas desulfurization under anoxic conditions</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND A high H2S elimination capacity has been achieved by anoxic biotrickling filters but accurate control of the nitrate dosage is required. Different control strategies have been used in biotrickling filters but proportional‐integral‐derivative (PID) control studies have not been reported to date. The aim of this study was to demonstrate the stability and robustness of PID control in an anoxic biotrickling filter. RESULTS Three PID tuning methods were tested: Ziegler–Nichols, Approximate M‐constrained integral gain optimization (AMIGO), and maintained oscillation. The best results were obtained using PID control by the maintained oscillation method, where the system reached stabilization 0.41 h after the H2S inlet step. Moreover, the nitrate consumption was 15.4% lower than that without control. CONCLUSION The biotrickling filter operated with a PID control strategy proved to be highly stable and robust against the perturbations and disturbances evaluated. The control system was able to operate satisfactorily to a change in the set‐point of the outlet H2S concentrations from 25 to 200 ppmV. The desulfurized biogas could be fed directly to an internal combustion engine or solid oxide fuel cell (SOFC) equipped with a zeolite clean unit. © 2017 Society of Chemical Industry</description><subject>Anoxic conditions</subject><subject>Approximation</subject><subject>Biofiltration</subject><subject>biofiltration of waste gases</subject><subject>Biogas</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Desulfurization</subject><subject>Desulfurizing</subject><subject>Dosage</subject><subject>energy</subject><subject>environmental biotechnology</subject><subject>Filters</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Hydrogen sulfide</subject><subject>Internal combustion engines</subject><subject>Nitrates</subject><subject>Optimization</subject><subject>process control</subject><subject>Proportional integral derivative</subject><subject>removal</subject><subject>Solid oxide fuel cells</subject><subject>Trickling filters</subject><subject>Zeolites</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEYRYMoWKsL3yDgysW0-ZtMstRatVLQRV2H_I2kTCc1mcHWp7dj3br64HLu_eAAcI3RBCNEpmvbmUlJGD0BI4xkVTDO0SkYIcJFQcqqPAcXOa8RQlwQPgLzt8UDtLHtUmxg3ufOb2AdEzQhfugMnc99U_cpfOsuxBb2rfMJ6jbugh1qLgxxvgRntW6yv_q7Y_D-OF_Nnovl69NidrcsLKWMFthbaYnkxjDPeYWt0JZj7V1pGcYaS-cpQ4YKJ2rKDa-MwxVGTMtSIF0zOgY3x91tip-9z51axz61h5cKSyIFkbLkB-r2SNkUc06-VtsUNjrtFUZqsKQGS2qwdGCnR_YrNH7_P6heZqv738YP1ZtpoQ</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Brito, Javier</creator><creator>Almenglo, Fernando</creator><creator>Ramírez, Martín</creator><creator>Gómez, José M</creator><creator>Cantero, Domingo</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5929-8783</orcidid></search><sort><creationdate>201709</creationdate><title>PID control system for biogas desulfurization under anoxic conditions</title><author>Brito, Javier ; Almenglo, Fernando ; Ramírez, Martín ; Gómez, José M ; Cantero, Domingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-1ec9c296bb4e6671c8ac61aed5c411a19de340b38d8f36b67bd17104a9580af43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anoxic conditions</topic><topic>Approximation</topic><topic>Biofiltration</topic><topic>biofiltration of waste gases</topic><topic>Biogas</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Desulfurization</topic><topic>Desulfurizing</topic><topic>Dosage</topic><topic>energy</topic><topic>environmental biotechnology</topic><topic>Filters</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Hydrogen sulfide</topic><topic>Internal combustion engines</topic><topic>Nitrates</topic><topic>Optimization</topic><topic>process control</topic><topic>Proportional integral derivative</topic><topic>removal</topic><topic>Solid oxide fuel cells</topic><topic>Trickling filters</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brito, Javier</creatorcontrib><creatorcontrib>Almenglo, Fernando</creatorcontrib><creatorcontrib>Ramírez, Martín</creatorcontrib><creatorcontrib>Gómez, José M</creatorcontrib><creatorcontrib>Cantero, Domingo</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brito, Javier</au><au>Almenglo, Fernando</au><au>Ramírez, Martín</au><au>Gómez, José M</au><au>Cantero, Domingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PID control system for biogas desulfurization under anoxic conditions</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2017-09</date><risdate>2017</risdate><volume>92</volume><issue>9</issue><spage>2369</spage><epage>2375</epage><pages>2369-2375</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND A high H2S elimination capacity has been achieved by anoxic biotrickling filters but accurate control of the nitrate dosage is required. Different control strategies have been used in biotrickling filters but proportional‐integral‐derivative (PID) control studies have not been reported to date. The aim of this study was to demonstrate the stability and robustness of PID control in an anoxic biotrickling filter. RESULTS Three PID tuning methods were tested: Ziegler–Nichols, Approximate M‐constrained integral gain optimization (AMIGO), and maintained oscillation. The best results were obtained using PID control by the maintained oscillation method, where the system reached stabilization 0.41 h after the H2S inlet step. Moreover, the nitrate consumption was 15.4% lower than that without control. CONCLUSION The biotrickling filter operated with a PID control strategy proved to be highly stable and robust against the perturbations and disturbances evaluated. The control system was able to operate satisfactorily to a change in the set‐point of the outlet H2S concentrations from 25 to 200 ppmV. The desulfurized biogas could be fed directly to an internal combustion engine or solid oxide fuel cell (SOFC) equipped with a zeolite clean unit. © 2017 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.5243</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5929-8783</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2017-09, Vol.92 (9), p.2369-2375
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_journals_1929829956
source Wiley Online Library All Journals
subjects Anoxic conditions
Approximation
Biofiltration
biofiltration of waste gases
Biogas
Control stability
Control systems
Desulfurization
Desulfurizing
Dosage
energy
environmental biotechnology
Filters
Fuel cells
Fuel technology
Hydrogen sulfide
Internal combustion engines
Nitrates
Optimization
process control
Proportional integral derivative
removal
Solid oxide fuel cells
Trickling filters
Zeolites
title PID control system for biogas desulfurization under anoxic conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PID%20control%20system%20for%20biogas%20desulfurization%20under%20anoxic%20conditions&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Brito,%20Javier&rft.date=2017-09&rft.volume=92&rft.issue=9&rft.spage=2369&rft.epage=2375&rft.pages=2369-2375&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.5243&rft_dat=%3Cproquest_cross%3E1929829956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929829956&rft_id=info:pmid/&rfr_iscdi=true