PID control system for biogas desulfurization under anoxic conditions
BACKGROUND A high H2S elimination capacity has been achieved by anoxic biotrickling filters but accurate control of the nitrate dosage is required. Different control strategies have been used in biotrickling filters but proportional‐integral‐derivative (PID) control studies have not been reported to...
Gespeichert in:
Veröffentlicht in: | Journal of chemical technology and biotechnology (1986) 2017-09, Vol.92 (9), p.2369-2375 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2375 |
---|---|
container_issue | 9 |
container_start_page | 2369 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 92 |
creator | Brito, Javier Almenglo, Fernando Ramírez, Martín Gómez, José M Cantero, Domingo |
description | BACKGROUND
A high H2S elimination capacity has been achieved by anoxic biotrickling filters but accurate control of the nitrate dosage is required. Different control strategies have been used in biotrickling filters but proportional‐integral‐derivative (PID) control studies have not been reported to date. The aim of this study was to demonstrate the stability and robustness of PID control in an anoxic biotrickling filter.
RESULTS
Three PID tuning methods were tested: Ziegler–Nichols, Approximate M‐constrained integral gain optimization (AMIGO), and maintained oscillation. The best results were obtained using PID control by the maintained oscillation method, where the system reached stabilization 0.41 h after the H2S inlet step. Moreover, the nitrate consumption was 15.4% lower than that without control.
CONCLUSION
The biotrickling filter operated with a PID control strategy proved to be highly stable and robust against the perturbations and disturbances evaluated. The control system was able to operate satisfactorily to a change in the set‐point of the outlet H2S concentrations from 25 to 200 ppmV. The desulfurized biogas could be fed directly to an internal combustion engine or solid oxide fuel cell (SOFC) equipped with a zeolite clean unit. © 2017 Society of Chemical Industry |
doi_str_mv | 10.1002/jctb.5243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1929829956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929829956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-1ec9c296bb4e6671c8ac61aed5c411a19de340b38d8f36b67bd17104a9580af43</originalsourceid><addsrcrecordid>eNp1kM1KAzEYRYMoWKsL3yDgysW0-ZtMstRatVLQRV2H_I2kTCc1mcHWp7dj3br64HLu_eAAcI3RBCNEpmvbmUlJGD0BI4xkVTDO0SkYIcJFQcqqPAcXOa8RQlwQPgLzt8UDtLHtUmxg3ufOb2AdEzQhfugMnc99U_cpfOsuxBb2rfMJ6jbugh1qLgxxvgRntW6yv_q7Y_D-OF_Nnovl69NidrcsLKWMFthbaYnkxjDPeYWt0JZj7V1pGcYaS-cpQ4YKJ2rKDa-MwxVGTMtSIF0zOgY3x91tip-9z51axz61h5cKSyIFkbLkB-r2SNkUc06-VtsUNjrtFUZqsKQGS2qwdGCnR_YrNH7_P6heZqv738YP1ZtpoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929829956</pqid></control><display><type>article</type><title>PID control system for biogas desulfurization under anoxic conditions</title><source>Wiley Online Library All Journals</source><creator>Brito, Javier ; Almenglo, Fernando ; Ramírez, Martín ; Gómez, José M ; Cantero, Domingo</creator><creatorcontrib>Brito, Javier ; Almenglo, Fernando ; Ramírez, Martín ; Gómez, José M ; Cantero, Domingo</creatorcontrib><description>BACKGROUND
A high H2S elimination capacity has been achieved by anoxic biotrickling filters but accurate control of the nitrate dosage is required. Different control strategies have been used in biotrickling filters but proportional‐integral‐derivative (PID) control studies have not been reported to date. The aim of this study was to demonstrate the stability and robustness of PID control in an anoxic biotrickling filter.
RESULTS
Three PID tuning methods were tested: Ziegler–Nichols, Approximate M‐constrained integral gain optimization (AMIGO), and maintained oscillation. The best results were obtained using PID control by the maintained oscillation method, where the system reached stabilization 0.41 h after the H2S inlet step. Moreover, the nitrate consumption was 15.4% lower than that without control.
CONCLUSION
The biotrickling filter operated with a PID control strategy proved to be highly stable and robust against the perturbations and disturbances evaluated. The control system was able to operate satisfactorily to a change in the set‐point of the outlet H2S concentrations from 25 to 200 ppmV. The desulfurized biogas could be fed directly to an internal combustion engine or solid oxide fuel cell (SOFC) equipped with a zeolite clean unit. © 2017 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.5243</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Anoxic conditions ; Approximation ; Biofiltration ; biofiltration of waste gases ; Biogas ; Control stability ; Control systems ; Desulfurization ; Desulfurizing ; Dosage ; energy ; environmental biotechnology ; Filters ; Fuel cells ; Fuel technology ; Hydrogen sulfide ; Internal combustion engines ; Nitrates ; Optimization ; process control ; Proportional integral derivative ; removal ; Solid oxide fuel cells ; Trickling filters ; Zeolites</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2017-09, Vol.92 (9), p.2369-2375</ispartof><rights>2017 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3343-1ec9c296bb4e6671c8ac61aed5c411a19de340b38d8f36b67bd17104a9580af43</citedby><cites>FETCH-LOGICAL-c3343-1ec9c296bb4e6671c8ac61aed5c411a19de340b38d8f36b67bd17104a9580af43</cites><orcidid>0000-0002-5929-8783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.5243$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.5243$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Brito, Javier</creatorcontrib><creatorcontrib>Almenglo, Fernando</creatorcontrib><creatorcontrib>Ramírez, Martín</creatorcontrib><creatorcontrib>Gómez, José M</creatorcontrib><creatorcontrib>Cantero, Domingo</creatorcontrib><title>PID control system for biogas desulfurization under anoxic conditions</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND
A high H2S elimination capacity has been achieved by anoxic biotrickling filters but accurate control of the nitrate dosage is required. Different control strategies have been used in biotrickling filters but proportional‐integral‐derivative (PID) control studies have not been reported to date. The aim of this study was to demonstrate the stability and robustness of PID control in an anoxic biotrickling filter.
RESULTS
Three PID tuning methods were tested: Ziegler–Nichols, Approximate M‐constrained integral gain optimization (AMIGO), and maintained oscillation. The best results were obtained using PID control by the maintained oscillation method, where the system reached stabilization 0.41 h after the H2S inlet step. Moreover, the nitrate consumption was 15.4% lower than that without control.
CONCLUSION
The biotrickling filter operated with a PID control strategy proved to be highly stable and robust against the perturbations and disturbances evaluated. The control system was able to operate satisfactorily to a change in the set‐point of the outlet H2S concentrations from 25 to 200 ppmV. The desulfurized biogas could be fed directly to an internal combustion engine or solid oxide fuel cell (SOFC) equipped with a zeolite clean unit. © 2017 Society of Chemical Industry</description><subject>Anoxic conditions</subject><subject>Approximation</subject><subject>Biofiltration</subject><subject>biofiltration of waste gases</subject><subject>Biogas</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Desulfurization</subject><subject>Desulfurizing</subject><subject>Dosage</subject><subject>energy</subject><subject>environmental biotechnology</subject><subject>Filters</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Hydrogen sulfide</subject><subject>Internal combustion engines</subject><subject>Nitrates</subject><subject>Optimization</subject><subject>process control</subject><subject>Proportional integral derivative</subject><subject>removal</subject><subject>Solid oxide fuel cells</subject><subject>Trickling filters</subject><subject>Zeolites</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEYRYMoWKsL3yDgysW0-ZtMstRatVLQRV2H_I2kTCc1mcHWp7dj3br64HLu_eAAcI3RBCNEpmvbmUlJGD0BI4xkVTDO0SkYIcJFQcqqPAcXOa8RQlwQPgLzt8UDtLHtUmxg3ufOb2AdEzQhfugMnc99U_cpfOsuxBb2rfMJ6jbugh1qLgxxvgRntW6yv_q7Y_D-OF_Nnovl69NidrcsLKWMFthbaYnkxjDPeYWt0JZj7V1pGcYaS-cpQ4YKJ2rKDa-MwxVGTMtSIF0zOgY3x91tip-9z51axz61h5cKSyIFkbLkB-r2SNkUc06-VtsUNjrtFUZqsKQGS2qwdGCnR_YrNH7_P6heZqv738YP1ZtpoQ</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Brito, Javier</creator><creator>Almenglo, Fernando</creator><creator>Ramírez, Martín</creator><creator>Gómez, José M</creator><creator>Cantero, Domingo</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5929-8783</orcidid></search><sort><creationdate>201709</creationdate><title>PID control system for biogas desulfurization under anoxic conditions</title><author>Brito, Javier ; Almenglo, Fernando ; Ramírez, Martín ; Gómez, José M ; Cantero, Domingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-1ec9c296bb4e6671c8ac61aed5c411a19de340b38d8f36b67bd17104a9580af43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anoxic conditions</topic><topic>Approximation</topic><topic>Biofiltration</topic><topic>biofiltration of waste gases</topic><topic>Biogas</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Desulfurization</topic><topic>Desulfurizing</topic><topic>Dosage</topic><topic>energy</topic><topic>environmental biotechnology</topic><topic>Filters</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Hydrogen sulfide</topic><topic>Internal combustion engines</topic><topic>Nitrates</topic><topic>Optimization</topic><topic>process control</topic><topic>Proportional integral derivative</topic><topic>removal</topic><topic>Solid oxide fuel cells</topic><topic>Trickling filters</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brito, Javier</creatorcontrib><creatorcontrib>Almenglo, Fernando</creatorcontrib><creatorcontrib>Ramírez, Martín</creatorcontrib><creatorcontrib>Gómez, José M</creatorcontrib><creatorcontrib>Cantero, Domingo</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brito, Javier</au><au>Almenglo, Fernando</au><au>Ramírez, Martín</au><au>Gómez, José M</au><au>Cantero, Domingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PID control system for biogas desulfurization under anoxic conditions</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2017-09</date><risdate>2017</risdate><volume>92</volume><issue>9</issue><spage>2369</spage><epage>2375</epage><pages>2369-2375</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND
A high H2S elimination capacity has been achieved by anoxic biotrickling filters but accurate control of the nitrate dosage is required. Different control strategies have been used in biotrickling filters but proportional‐integral‐derivative (PID) control studies have not been reported to date. The aim of this study was to demonstrate the stability and robustness of PID control in an anoxic biotrickling filter.
RESULTS
Three PID tuning methods were tested: Ziegler–Nichols, Approximate M‐constrained integral gain optimization (AMIGO), and maintained oscillation. The best results were obtained using PID control by the maintained oscillation method, where the system reached stabilization 0.41 h after the H2S inlet step. Moreover, the nitrate consumption was 15.4% lower than that without control.
CONCLUSION
The biotrickling filter operated with a PID control strategy proved to be highly stable and robust against the perturbations and disturbances evaluated. The control system was able to operate satisfactorily to a change in the set‐point of the outlet H2S concentrations from 25 to 200 ppmV. The desulfurized biogas could be fed directly to an internal combustion engine or solid oxide fuel cell (SOFC) equipped with a zeolite clean unit. © 2017 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.5243</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5929-8783</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2017-09, Vol.92 (9), p.2369-2375 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_journals_1929829956 |
source | Wiley Online Library All Journals |
subjects | Anoxic conditions Approximation Biofiltration biofiltration of waste gases Biogas Control stability Control systems Desulfurization Desulfurizing Dosage energy environmental biotechnology Filters Fuel cells Fuel technology Hydrogen sulfide Internal combustion engines Nitrates Optimization process control Proportional integral derivative removal Solid oxide fuel cells Trickling filters Zeolites |
title | PID control system for biogas desulfurization under anoxic conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PID%20control%20system%20for%20biogas%20desulfurization%20under%20anoxic%20conditions&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Brito,%20Javier&rft.date=2017-09&rft.volume=92&rft.issue=9&rft.spage=2369&rft.epage=2375&rft.pages=2369-2375&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.5243&rft_dat=%3Cproquest_cross%3E1929829956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929829956&rft_id=info:pmid/&rfr_iscdi=true |