Catecholamine-Dependent β-Adrenergic Signaling in a Pluripotent Stem Cell Model of Takotsubo Cardiomyopathy

Takotsubo syndrome (TTS) is characterized by an acute left ventricular dysfunction and is associated with life-threating complications in the acute phase. The underlying disease mechanism in TTS is still unknown. A genetic basis has been suggested to be involved in the pathogenesis. The aims of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American College of Cardiology 2017-08, Vol.70 (8), p.975-991
Hauptverfasser: Borchert, Thomas, Hübscher, Daniela, Guessoum, Celina I., Lam, Tuan-Dinh D., Ghadri, Jelena R., Schellinger, Isabel N., Tiburcy, Malte, Liaw, Norman Y., Li, Yun, Haas, Jan, Sossalla, Samuel, Huber, Mia A., Cyganek, Lukas, Jacobshagen, Claudius, Dressel, Ralf, Raaz, Uwe, Nikolaev, Viacheslav O., Guan, Kaomei, Thiele, Holger, Meder, Benjamin, Wollnik, Bernd, Zimmermann, Wolfram-Hubertus, Lüscher, Thomas F., Hasenfuss, Gerd, Templin, Christian, Streckfuss-Bömeke, Katrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 991
container_issue 8
container_start_page 975
container_title Journal of the American College of Cardiology
container_volume 70
creator Borchert, Thomas
Hübscher, Daniela
Guessoum, Celina I.
Lam, Tuan-Dinh D.
Ghadri, Jelena R.
Schellinger, Isabel N.
Tiburcy, Malte
Liaw, Norman Y.
Li, Yun
Haas, Jan
Sossalla, Samuel
Huber, Mia A.
Cyganek, Lukas
Jacobshagen, Claudius
Dressel, Ralf
Raaz, Uwe
Nikolaev, Viacheslav O.
Guan, Kaomei
Thiele, Holger
Meder, Benjamin
Wollnik, Bernd
Zimmermann, Wolfram-Hubertus
Lüscher, Thomas F.
Hasenfuss, Gerd
Templin, Christian
Streckfuss-Bömeke, Katrin
description Takotsubo syndrome (TTS) is characterized by an acute left ventricular dysfunction and is associated with life-threating complications in the acute phase. The underlying disease mechanism in TTS is still unknown. A genetic basis has been suggested to be involved in the pathogenesis. The aims of the study were to establish an in vitro induced pluripotent stem cell (iPSC) model of TTS, to test the hypothesis of altered β-adrenergic signaling in TTS iPSC-cardiomyocytes (CMs), and to explore whether genetic susceptibility underlies the pathophysiology of TTS. Somatic cells of patients with TTS and control subjects were reprogrammed to iPSCs and differentiated into CMs. Three-month-old CMs were subjected to catecholamine stimulation to simulate neurohumoral overstimulation. We investigated β-adrenergic signaling and TTS cardiomyocyte function. Enhanced β-adrenergic signaling in TTS-iPSC-CMs under catecholamine-induced stress increased expression of the cardiac stress marker NR4A1; cyclic adenosine monophosphate levels; and cyclic adenosine monophosphate–dependent protein kinase A–mediated hyperphosphorylation of RYR2-S2808, PLN-S16, TNI-S23/24, and Cav1.2-S1928, and leads to a reduced calcium time to transient 50% decay. These cellular catecholamine-dependent responses were mainly mediated by β1-adrenoceptor signaling in TTS. Engineered heart muscles from TTS-iPSC-CMs showed an impaired force of contraction and a higher sensitivity to isoprenaline-stimulated inotropy compared with control subjects. In addition, altered electrical activity and increased lipid accumulation were detected in catecholamine-treated TTS-iPSC-CMs, and were confirmed by differentially expressed lipid transporters CD36 and CPT1C. Furthermore, we uncovered genetic variants in different key regulators of cardiac function. Enhanced β-adrenergic signaling and higher sensitivity to catecholamine-induced toxicity were identified as mechanisms associated with the TTS phenotype. (International Takotsubo Registry [InterTAK Registry] [InterTAK]; NCT01947621) [Display omitted]
doi_str_mv 10.1016/j.jacc.2017.06.061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1929781518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735109717380099</els_id><sourcerecordid>1929781518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-43a4d159e7b6ae33b2d11371575469b3a8955487a5616e8f250efb597b094d603</originalsourceid><addsrcrecordid>eNp9kN1q1UAUhQdR7Gn1BbyQgNc5zk4yf-BNSbUKLRVar4fJzM7pxCQTJxPhvI3P4CP4AD5Tczi1l8KGffOtBesj5A3QLVDg77ttZ6zdFhTElvL14BnZAGMyL5kSz8mGipLlQJU4Iafz3FFKuQT1kpwUUoIsqNyQoTYJ7X3ozeBHzC9wwtHhmLK_v_NzF3HEuPM2u_W70fR-3GV-zEz2tV-in0I6gLcJh6zGvs-ug8P-z6_QZnfme0jz0oSsNtH5MOzDZNL9_hV50Zp-xteP_4x8-_Txrv6cX91cfqnPr3JbFTLlVWkqB0yhaLjBsmwKB1AKYIJVXDWlkYqxSgrDOHCUbcEots26uaGqcpyWZ-TdsXeK4ceCc9JdWOK6YNagCiUkMJArVRwpG8M8R2z1FP1g4l4D1QfDutMHw_pgWFO-Hqyht4_VSzOge4r8U7oCH44ArgN_eox6th5Hi85HtEm74P_X_wCJHY2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929781518</pqid></control><display><type>article</type><title>Catecholamine-Dependent β-Adrenergic Signaling in a Pluripotent Stem Cell Model of Takotsubo Cardiomyopathy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Borchert, Thomas ; Hübscher, Daniela ; Guessoum, Celina I. ; Lam, Tuan-Dinh D. ; Ghadri, Jelena R. ; Schellinger, Isabel N. ; Tiburcy, Malte ; Liaw, Norman Y. ; Li, Yun ; Haas, Jan ; Sossalla, Samuel ; Huber, Mia A. ; Cyganek, Lukas ; Jacobshagen, Claudius ; Dressel, Ralf ; Raaz, Uwe ; Nikolaev, Viacheslav O. ; Guan, Kaomei ; Thiele, Holger ; Meder, Benjamin ; Wollnik, Bernd ; Zimmermann, Wolfram-Hubertus ; Lüscher, Thomas F. ; Hasenfuss, Gerd ; Templin, Christian ; Streckfuss-Bömeke, Katrin</creator><creatorcontrib>Borchert, Thomas ; Hübscher, Daniela ; Guessoum, Celina I. ; Lam, Tuan-Dinh D. ; Ghadri, Jelena R. ; Schellinger, Isabel N. ; Tiburcy, Malte ; Liaw, Norman Y. ; Li, Yun ; Haas, Jan ; Sossalla, Samuel ; Huber, Mia A. ; Cyganek, Lukas ; Jacobshagen, Claudius ; Dressel, Ralf ; Raaz, Uwe ; Nikolaev, Viacheslav O. ; Guan, Kaomei ; Thiele, Holger ; Meder, Benjamin ; Wollnik, Bernd ; Zimmermann, Wolfram-Hubertus ; Lüscher, Thomas F. ; Hasenfuss, Gerd ; Templin, Christian ; Streckfuss-Bömeke, Katrin</creatorcontrib><description>Takotsubo syndrome (TTS) is characterized by an acute left ventricular dysfunction and is associated with life-threating complications in the acute phase. The underlying disease mechanism in TTS is still unknown. A genetic basis has been suggested to be involved in the pathogenesis. The aims of the study were to establish an in vitro induced pluripotent stem cell (iPSC) model of TTS, to test the hypothesis of altered β-adrenergic signaling in TTS iPSC-cardiomyocytes (CMs), and to explore whether genetic susceptibility underlies the pathophysiology of TTS. Somatic cells of patients with TTS and control subjects were reprogrammed to iPSCs and differentiated into CMs. Three-month-old CMs were subjected to catecholamine stimulation to simulate neurohumoral overstimulation. We investigated β-adrenergic signaling and TTS cardiomyocyte function. Enhanced β-adrenergic signaling in TTS-iPSC-CMs under catecholamine-induced stress increased expression of the cardiac stress marker NR4A1; cyclic adenosine monophosphate levels; and cyclic adenosine monophosphate–dependent protein kinase A–mediated hyperphosphorylation of RYR2-S2808, PLN-S16, TNI-S23/24, and Cav1.2-S1928, and leads to a reduced calcium time to transient 50% decay. These cellular catecholamine-dependent responses were mainly mediated by β1-adrenoceptor signaling in TTS. Engineered heart muscles from TTS-iPSC-CMs showed an impaired force of contraction and a higher sensitivity to isoprenaline-stimulated inotropy compared with control subjects. In addition, altered electrical activity and increased lipid accumulation were detected in catecholamine-treated TTS-iPSC-CMs, and were confirmed by differentially expressed lipid transporters CD36 and CPT1C. Furthermore, we uncovered genetic variants in different key regulators of cardiac function. Enhanced β-adrenergic signaling and higher sensitivity to catecholamine-induced toxicity were identified as mechanisms associated with the TTS phenotype. (International Takotsubo Registry [InterTAK Registry] [InterTAK]; NCT01947621) [Display omitted]</description><identifier>ISSN: 0735-1097</identifier><identifier>EISSN: 1558-3597</identifier><identifier>DOI: 10.1016/j.jacc.2017.06.061</identifier><identifier>PMID: 28818208</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine kinase ; Adenosine monophosphate ; Adrenergic receptors ; Adult ; broken heart syndrome ; Calcium ; Calcium channels (voltage-gated) ; Cardiac arrhythmia ; Cardiac muscle ; Cardiology ; Cardiomyocytes ; Cardiomyopathy ; Catecholamine ; Catecholamines ; Catecholamines - pharmacology ; Cell Differentiation ; Cells, Cultured ; Complications ; Computer simulation ; Contraction ; Cyclic AMP ; DNA methylation ; electrical activity ; Female ; Fibroblasts ; Heart ; Heart attacks ; Heart diseases ; Humans ; In vitro methods and tests ; Induced Pluripotent Stem Cells - metabolism ; Induced Pluripotent Stem Cells - pathology ; Inhibitory postsynaptic potentials ; iPSC cardiomyocytes ; Kinases ; Lipids ; lipotoxicity ; Metabolism ; Middle Aged ; Muscle contraction ; Muscles ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - pathology ; Pathogenesis ; Patients ; Phase (cyclic) ; Phosphorylation ; Pluripotency ; Protein kinase A ; Receptors, Adrenergic, beta - metabolism ; Regulators ; Rodents ; Ryanodine receptors ; Sensitivity ; Signal Transduction ; Somatic cells ; Stem cells ; Stimulation ; Studies ; Takotsubo Cardiomyopathy - metabolism ; Takotsubo Cardiomyopathy - pathology ; Toxicity ; TTS pathogenesis ; Ventricle</subject><ispartof>Journal of the American College of Cardiology, 2017-08, Vol.70 (8), p.975-991</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Aug 22, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-43a4d159e7b6ae33b2d11371575469b3a8955487a5616e8f250efb597b094d603</citedby><cites>FETCH-LOGICAL-c428t-43a4d159e7b6ae33b2d11371575469b3a8955487a5616e8f250efb597b094d603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0735109717380099$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28818208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borchert, Thomas</creatorcontrib><creatorcontrib>Hübscher, Daniela</creatorcontrib><creatorcontrib>Guessoum, Celina I.</creatorcontrib><creatorcontrib>Lam, Tuan-Dinh D.</creatorcontrib><creatorcontrib>Ghadri, Jelena R.</creatorcontrib><creatorcontrib>Schellinger, Isabel N.</creatorcontrib><creatorcontrib>Tiburcy, Malte</creatorcontrib><creatorcontrib>Liaw, Norman Y.</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Haas, Jan</creatorcontrib><creatorcontrib>Sossalla, Samuel</creatorcontrib><creatorcontrib>Huber, Mia A.</creatorcontrib><creatorcontrib>Cyganek, Lukas</creatorcontrib><creatorcontrib>Jacobshagen, Claudius</creatorcontrib><creatorcontrib>Dressel, Ralf</creatorcontrib><creatorcontrib>Raaz, Uwe</creatorcontrib><creatorcontrib>Nikolaev, Viacheslav O.</creatorcontrib><creatorcontrib>Guan, Kaomei</creatorcontrib><creatorcontrib>Thiele, Holger</creatorcontrib><creatorcontrib>Meder, Benjamin</creatorcontrib><creatorcontrib>Wollnik, Bernd</creatorcontrib><creatorcontrib>Zimmermann, Wolfram-Hubertus</creatorcontrib><creatorcontrib>Lüscher, Thomas F.</creatorcontrib><creatorcontrib>Hasenfuss, Gerd</creatorcontrib><creatorcontrib>Templin, Christian</creatorcontrib><creatorcontrib>Streckfuss-Bömeke, Katrin</creatorcontrib><title>Catecholamine-Dependent β-Adrenergic Signaling in a Pluripotent Stem Cell Model of Takotsubo Cardiomyopathy</title><title>Journal of the American College of Cardiology</title><addtitle>J Am Coll Cardiol</addtitle><description>Takotsubo syndrome (TTS) is characterized by an acute left ventricular dysfunction and is associated with life-threating complications in the acute phase. The underlying disease mechanism in TTS is still unknown. A genetic basis has been suggested to be involved in the pathogenesis. The aims of the study were to establish an in vitro induced pluripotent stem cell (iPSC) model of TTS, to test the hypothesis of altered β-adrenergic signaling in TTS iPSC-cardiomyocytes (CMs), and to explore whether genetic susceptibility underlies the pathophysiology of TTS. Somatic cells of patients with TTS and control subjects were reprogrammed to iPSCs and differentiated into CMs. Three-month-old CMs were subjected to catecholamine stimulation to simulate neurohumoral overstimulation. We investigated β-adrenergic signaling and TTS cardiomyocyte function. Enhanced β-adrenergic signaling in TTS-iPSC-CMs under catecholamine-induced stress increased expression of the cardiac stress marker NR4A1; cyclic adenosine monophosphate levels; and cyclic adenosine monophosphate–dependent protein kinase A–mediated hyperphosphorylation of RYR2-S2808, PLN-S16, TNI-S23/24, and Cav1.2-S1928, and leads to a reduced calcium time to transient 50% decay. These cellular catecholamine-dependent responses were mainly mediated by β1-adrenoceptor signaling in TTS. Engineered heart muscles from TTS-iPSC-CMs showed an impaired force of contraction and a higher sensitivity to isoprenaline-stimulated inotropy compared with control subjects. In addition, altered electrical activity and increased lipid accumulation were detected in catecholamine-treated TTS-iPSC-CMs, and were confirmed by differentially expressed lipid transporters CD36 and CPT1C. Furthermore, we uncovered genetic variants in different key regulators of cardiac function. Enhanced β-adrenergic signaling and higher sensitivity to catecholamine-induced toxicity were identified as mechanisms associated with the TTS phenotype. (International Takotsubo Registry [InterTAK Registry] [InterTAK]; NCT01947621) [Display omitted]</description><subject>Adenosine kinase</subject><subject>Adenosine monophosphate</subject><subject>Adrenergic receptors</subject><subject>Adult</subject><subject>broken heart syndrome</subject><subject>Calcium</subject><subject>Calcium channels (voltage-gated)</subject><subject>Cardiac arrhythmia</subject><subject>Cardiac muscle</subject><subject>Cardiology</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathy</subject><subject>Catecholamine</subject><subject>Catecholamines</subject><subject>Catecholamines - pharmacology</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Complications</subject><subject>Computer simulation</subject><subject>Contraction</subject><subject>Cyclic AMP</subject><subject>DNA methylation</subject><subject>electrical activity</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Heart</subject><subject>Heart attacks</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>In vitro methods and tests</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Induced Pluripotent Stem Cells - pathology</subject><subject>Inhibitory postsynaptic potentials</subject><subject>iPSC cardiomyocytes</subject><subject>Kinases</subject><subject>Lipids</subject><subject>lipotoxicity</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Muscle contraction</subject><subject>Muscles</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Pathogenesis</subject><subject>Patients</subject><subject>Phase (cyclic)</subject><subject>Phosphorylation</subject><subject>Pluripotency</subject><subject>Protein kinase A</subject><subject>Receptors, Adrenergic, beta - metabolism</subject><subject>Regulators</subject><subject>Rodents</subject><subject>Ryanodine receptors</subject><subject>Sensitivity</subject><subject>Signal Transduction</subject><subject>Somatic cells</subject><subject>Stem cells</subject><subject>Stimulation</subject><subject>Studies</subject><subject>Takotsubo Cardiomyopathy - metabolism</subject><subject>Takotsubo Cardiomyopathy - pathology</subject><subject>Toxicity</subject><subject>TTS pathogenesis</subject><subject>Ventricle</subject><issn>0735-1097</issn><issn>1558-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN1q1UAUhQdR7Gn1BbyQgNc5zk4yf-BNSbUKLRVar4fJzM7pxCQTJxPhvI3P4CP4AD5Tczi1l8KGffOtBesj5A3QLVDg77ttZ6zdFhTElvL14BnZAGMyL5kSz8mGipLlQJU4Iafz3FFKuQT1kpwUUoIsqNyQoTYJ7X3ozeBHzC9wwtHhmLK_v_NzF3HEuPM2u_W70fR-3GV-zEz2tV-in0I6gLcJh6zGvs-ug8P-z6_QZnfme0jz0oSsNtH5MOzDZNL9_hV50Zp-xteP_4x8-_Txrv6cX91cfqnPr3JbFTLlVWkqB0yhaLjBsmwKB1AKYIJVXDWlkYqxSgrDOHCUbcEots26uaGqcpyWZ-TdsXeK4ceCc9JdWOK6YNagCiUkMJArVRwpG8M8R2z1FP1g4l4D1QfDutMHw_pgWFO-Hqyht4_VSzOge4r8U7oCH44ArgN_eox6th5Hi85HtEm74P_X_wCJHY2s</recordid><startdate>20170822</startdate><enddate>20170822</enddate><creator>Borchert, Thomas</creator><creator>Hübscher, Daniela</creator><creator>Guessoum, Celina I.</creator><creator>Lam, Tuan-Dinh D.</creator><creator>Ghadri, Jelena R.</creator><creator>Schellinger, Isabel N.</creator><creator>Tiburcy, Malte</creator><creator>Liaw, Norman Y.</creator><creator>Li, Yun</creator><creator>Haas, Jan</creator><creator>Sossalla, Samuel</creator><creator>Huber, Mia A.</creator><creator>Cyganek, Lukas</creator><creator>Jacobshagen, Claudius</creator><creator>Dressel, Ralf</creator><creator>Raaz, Uwe</creator><creator>Nikolaev, Viacheslav O.</creator><creator>Guan, Kaomei</creator><creator>Thiele, Holger</creator><creator>Meder, Benjamin</creator><creator>Wollnik, Bernd</creator><creator>Zimmermann, Wolfram-Hubertus</creator><creator>Lüscher, Thomas F.</creator><creator>Hasenfuss, Gerd</creator><creator>Templin, Christian</creator><creator>Streckfuss-Bömeke, Katrin</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20170822</creationdate><title>Catecholamine-Dependent β-Adrenergic Signaling in a Pluripotent Stem Cell Model of Takotsubo Cardiomyopathy</title><author>Borchert, Thomas ; Hübscher, Daniela ; Guessoum, Celina I. ; Lam, Tuan-Dinh D. ; Ghadri, Jelena R. ; Schellinger, Isabel N. ; Tiburcy, Malte ; Liaw, Norman Y. ; Li, Yun ; Haas, Jan ; Sossalla, Samuel ; Huber, Mia A. ; Cyganek, Lukas ; Jacobshagen, Claudius ; Dressel, Ralf ; Raaz, Uwe ; Nikolaev, Viacheslav O. ; Guan, Kaomei ; Thiele, Holger ; Meder, Benjamin ; Wollnik, Bernd ; Zimmermann, Wolfram-Hubertus ; Lüscher, Thomas F. ; Hasenfuss, Gerd ; Templin, Christian ; Streckfuss-Bömeke, Katrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-43a4d159e7b6ae33b2d11371575469b3a8955487a5616e8f250efb597b094d603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine kinase</topic><topic>Adenosine monophosphate</topic><topic>Adrenergic receptors</topic><topic>Adult</topic><topic>broken heart syndrome</topic><topic>Calcium</topic><topic>Calcium channels (voltage-gated)</topic><topic>Cardiac arrhythmia</topic><topic>Cardiac muscle</topic><topic>Cardiology</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathy</topic><topic>Catecholamine</topic><topic>Catecholamines</topic><topic>Catecholamines - pharmacology</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Complications</topic><topic>Computer simulation</topic><topic>Contraction</topic><topic>Cyclic AMP</topic><topic>DNA methylation</topic><topic>electrical activity</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Heart</topic><topic>Heart attacks</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>In vitro methods and tests</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Induced Pluripotent Stem Cells - pathology</topic><topic>Inhibitory postsynaptic potentials</topic><topic>iPSC cardiomyocytes</topic><topic>Kinases</topic><topic>Lipids</topic><topic>lipotoxicity</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Muscle contraction</topic><topic>Muscles</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Pathogenesis</topic><topic>Patients</topic><topic>Phase (cyclic)</topic><topic>Phosphorylation</topic><topic>Pluripotency</topic><topic>Protein kinase A</topic><topic>Receptors, Adrenergic, beta - metabolism</topic><topic>Regulators</topic><topic>Rodents</topic><topic>Ryanodine receptors</topic><topic>Sensitivity</topic><topic>Signal Transduction</topic><topic>Somatic cells</topic><topic>Stem cells</topic><topic>Stimulation</topic><topic>Studies</topic><topic>Takotsubo Cardiomyopathy - metabolism</topic><topic>Takotsubo Cardiomyopathy - pathology</topic><topic>Toxicity</topic><topic>TTS pathogenesis</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borchert, Thomas</creatorcontrib><creatorcontrib>Hübscher, Daniela</creatorcontrib><creatorcontrib>Guessoum, Celina I.</creatorcontrib><creatorcontrib>Lam, Tuan-Dinh D.</creatorcontrib><creatorcontrib>Ghadri, Jelena R.</creatorcontrib><creatorcontrib>Schellinger, Isabel N.</creatorcontrib><creatorcontrib>Tiburcy, Malte</creatorcontrib><creatorcontrib>Liaw, Norman Y.</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Haas, Jan</creatorcontrib><creatorcontrib>Sossalla, Samuel</creatorcontrib><creatorcontrib>Huber, Mia A.</creatorcontrib><creatorcontrib>Cyganek, Lukas</creatorcontrib><creatorcontrib>Jacobshagen, Claudius</creatorcontrib><creatorcontrib>Dressel, Ralf</creatorcontrib><creatorcontrib>Raaz, Uwe</creatorcontrib><creatorcontrib>Nikolaev, Viacheslav O.</creatorcontrib><creatorcontrib>Guan, Kaomei</creatorcontrib><creatorcontrib>Thiele, Holger</creatorcontrib><creatorcontrib>Meder, Benjamin</creatorcontrib><creatorcontrib>Wollnik, Bernd</creatorcontrib><creatorcontrib>Zimmermann, Wolfram-Hubertus</creatorcontrib><creatorcontrib>Lüscher, Thomas F.</creatorcontrib><creatorcontrib>Hasenfuss, Gerd</creatorcontrib><creatorcontrib>Templin, Christian</creatorcontrib><creatorcontrib>Streckfuss-Bömeke, Katrin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Journal of the American College of Cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borchert, Thomas</au><au>Hübscher, Daniela</au><au>Guessoum, Celina I.</au><au>Lam, Tuan-Dinh D.</au><au>Ghadri, Jelena R.</au><au>Schellinger, Isabel N.</au><au>Tiburcy, Malte</au><au>Liaw, Norman Y.</au><au>Li, Yun</au><au>Haas, Jan</au><au>Sossalla, Samuel</au><au>Huber, Mia A.</au><au>Cyganek, Lukas</au><au>Jacobshagen, Claudius</au><au>Dressel, Ralf</au><au>Raaz, Uwe</au><au>Nikolaev, Viacheslav O.</au><au>Guan, Kaomei</au><au>Thiele, Holger</au><au>Meder, Benjamin</au><au>Wollnik, Bernd</au><au>Zimmermann, Wolfram-Hubertus</au><au>Lüscher, Thomas F.</au><au>Hasenfuss, Gerd</au><au>Templin, Christian</au><au>Streckfuss-Bömeke, Katrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catecholamine-Dependent β-Adrenergic Signaling in a Pluripotent Stem Cell Model of Takotsubo Cardiomyopathy</atitle><jtitle>Journal of the American College of Cardiology</jtitle><addtitle>J Am Coll Cardiol</addtitle><date>2017-08-22</date><risdate>2017</risdate><volume>70</volume><issue>8</issue><spage>975</spage><epage>991</epage><pages>975-991</pages><issn>0735-1097</issn><eissn>1558-3597</eissn><abstract>Takotsubo syndrome (TTS) is characterized by an acute left ventricular dysfunction and is associated with life-threating complications in the acute phase. The underlying disease mechanism in TTS is still unknown. A genetic basis has been suggested to be involved in the pathogenesis. The aims of the study were to establish an in vitro induced pluripotent stem cell (iPSC) model of TTS, to test the hypothesis of altered β-adrenergic signaling in TTS iPSC-cardiomyocytes (CMs), and to explore whether genetic susceptibility underlies the pathophysiology of TTS. Somatic cells of patients with TTS and control subjects were reprogrammed to iPSCs and differentiated into CMs. Three-month-old CMs were subjected to catecholamine stimulation to simulate neurohumoral overstimulation. We investigated β-adrenergic signaling and TTS cardiomyocyte function. Enhanced β-adrenergic signaling in TTS-iPSC-CMs under catecholamine-induced stress increased expression of the cardiac stress marker NR4A1; cyclic adenosine monophosphate levels; and cyclic adenosine monophosphate–dependent protein kinase A–mediated hyperphosphorylation of RYR2-S2808, PLN-S16, TNI-S23/24, and Cav1.2-S1928, and leads to a reduced calcium time to transient 50% decay. These cellular catecholamine-dependent responses were mainly mediated by β1-adrenoceptor signaling in TTS. Engineered heart muscles from TTS-iPSC-CMs showed an impaired force of contraction and a higher sensitivity to isoprenaline-stimulated inotropy compared with control subjects. In addition, altered electrical activity and increased lipid accumulation were detected in catecholamine-treated TTS-iPSC-CMs, and were confirmed by differentially expressed lipid transporters CD36 and CPT1C. Furthermore, we uncovered genetic variants in different key regulators of cardiac function. Enhanced β-adrenergic signaling and higher sensitivity to catecholamine-induced toxicity were identified as mechanisms associated with the TTS phenotype. (International Takotsubo Registry [InterTAK Registry] [InterTAK]; NCT01947621) [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28818208</pmid><doi>10.1016/j.jacc.2017.06.061</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-1097
ispartof Journal of the American College of Cardiology, 2017-08, Vol.70 (8), p.975-991
issn 0735-1097
1558-3597
language eng
recordid cdi_proquest_journals_1929781518
source MEDLINE; Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adenosine kinase
Adenosine monophosphate
Adrenergic receptors
Adult
broken heart syndrome
Calcium
Calcium channels (voltage-gated)
Cardiac arrhythmia
Cardiac muscle
Cardiology
Cardiomyocytes
Cardiomyopathy
Catecholamine
Catecholamines
Catecholamines - pharmacology
Cell Differentiation
Cells, Cultured
Complications
Computer simulation
Contraction
Cyclic AMP
DNA methylation
electrical activity
Female
Fibroblasts
Heart
Heart attacks
Heart diseases
Humans
In vitro methods and tests
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - pathology
Inhibitory postsynaptic potentials
iPSC cardiomyocytes
Kinases
Lipids
lipotoxicity
Metabolism
Middle Aged
Muscle contraction
Muscles
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - pathology
Pathogenesis
Patients
Phase (cyclic)
Phosphorylation
Pluripotency
Protein kinase A
Receptors, Adrenergic, beta - metabolism
Regulators
Rodents
Ryanodine receptors
Sensitivity
Signal Transduction
Somatic cells
Stem cells
Stimulation
Studies
Takotsubo Cardiomyopathy - metabolism
Takotsubo Cardiomyopathy - pathology
Toxicity
TTS pathogenesis
Ventricle
title Catecholamine-Dependent β-Adrenergic Signaling in a Pluripotent Stem Cell Model of Takotsubo Cardiomyopathy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catecholamine-Dependent%20%CE%B2-Adrenergic%20Signaling%20in%20a%20Pluripotent%20Stem%20Cell%20Model%C2%A0of%20Takotsubo%20Cardiomyopathy&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Cardiology&rft.au=Borchert,%20Thomas&rft.date=2017-08-22&rft.volume=70&rft.issue=8&rft.spage=975&rft.epage=991&rft.pages=975-991&rft.issn=0735-1097&rft.eissn=1558-3597&rft_id=info:doi/10.1016/j.jacc.2017.06.061&rft_dat=%3Cproquest_cross%3E1929781518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929781518&rft_id=info:pmid/28818208&rft_els_id=S0735109717380099&rfr_iscdi=true