Cleaning graphene: Comparing heat treatments in air and in vacuum
Surface impurities and contamination often seriously degrade the properties of two‐dimensional materials such as graphene. To remove contamination, thermal annealing is commonly used. We present a comparative analysis of annealing treatments in air and in vacuum, both ex situ and “pre situ,” where a...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. PSS-RRL. Rapid research letters 2017-08, Vol.11 (8), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physica status solidi. PSS-RRL. Rapid research letters |
container_volume | 11 |
creator | Tripathi, Mukesh Mittelberger, Andreas Mustonen, Kimmo Mangler, Clemens Kotakoski, Jani Meyer, Jannik C. Susi, Toma |
description | Surface impurities and contamination often seriously degrade the properties of two‐dimensional materials such as graphene. To remove contamination, thermal annealing is commonly used. We present a comparative analysis of annealing treatments in air and in vacuum, both ex situ and “pre situ,” where an ultra‐high vacuum treatment chamber is directly connected to an aberration‐corrected scanning transmission electron microscope. While ex situ treatments do remove contamination, it is challenging to obtain atomically clean surfaces after ambient transfer. However, pre situ cleaning with radiative or laser heating appears reliable and well suited to clean graphene without damage to most suspended areas.
Pre situ annealing of typical dirty graphene samples yields atomically clean areas several hundred nm2 in size.
One‐atom‐thick graphene is often covered by adsorbed contamination, often making it challenging to observe and manipulate its atomic structure. By heating the sample in a vacuum chamber directly connected to an electron microscope, it is possible to obtain large atomically clean areas to enable many further studies. |
doi_str_mv | 10.1002/pssr.201700124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1929712878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929712878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-70b60acee790aec46bb31d7108ffb1cf28617ac8ad58306b200cecaf7c53cb013</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK5ePRc8d50kbZN6W4pfsKC4eg7TNN3t0qY1aZX9721ZWY9eZh7De_PgR8g1hQUFYLed927BgAoAyqITMqMyYWHCBJwedRydkwvvdwBxKiI-I8usNmgruwk2DrutseYuyNqmQzfdtgb7oHfjbIztfVDZACsXoC0m-YV6GJpLclZi7c3V756Tj4f79-wpXL08PmfLVai55FEoIE8AtTEiBTQ6SvKc00JQkGWZU10ymVCBWmIRSw5JzgC00VgKHXOdA-VzcnP427n2czC-V7t2cHasVDRlqaBMCjm6FgeXdu3Iw5Sqc1WDbq8oqAmTmjCpI6YxkB4C31Vt9v-41et6_faX_QEPk2w0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929712878</pqid></control><display><type>article</type><title>Cleaning graphene: Comparing heat treatments in air and in vacuum</title><source>Wiley-Blackwell Journals</source><creator>Tripathi, Mukesh ; Mittelberger, Andreas ; Mustonen, Kimmo ; Mangler, Clemens ; Kotakoski, Jani ; Meyer, Jannik C. ; Susi, Toma</creator><creatorcontrib>Tripathi, Mukesh ; Mittelberger, Andreas ; Mustonen, Kimmo ; Mangler, Clemens ; Kotakoski, Jani ; Meyer, Jannik C. ; Susi, Toma</creatorcontrib><description>Surface impurities and contamination often seriously degrade the properties of two‐dimensional materials such as graphene. To remove contamination, thermal annealing is commonly used. We present a comparative analysis of annealing treatments in air and in vacuum, both ex situ and “pre situ,” where an ultra‐high vacuum treatment chamber is directly connected to an aberration‐corrected scanning transmission electron microscope. While ex situ treatments do remove contamination, it is challenging to obtain atomically clean surfaces after ambient transfer. However, pre situ cleaning with radiative or laser heating appears reliable and well suited to clean graphene without damage to most suspended areas.
Pre situ annealing of typical dirty graphene samples yields atomically clean areas several hundred nm2 in size.
One‐atom‐thick graphene is often covered by adsorbed contamination, often making it challenging to observe and manipulate its atomic structure. By heating the sample in a vacuum chamber directly connected to an electron microscope, it is possible to obtain large atomically clean areas to enable many further studies.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.201700124</identifier><language>eng</language><publisher>Berlin: WILEY?VCH Verlag Berlin GmbH</publisher><subject>Aberration ; Annealing ; Cleaning ; Contamination ; Graphene ; Heat treating ; Heat treatment ; High vacuum ; Laser beam heating ; scanning transmission electron microscopy ; Solid state physics</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2017-08, Vol.11 (8), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-70b60acee790aec46bb31d7108ffb1cf28617ac8ad58306b200cecaf7c53cb013</citedby><cites>FETCH-LOGICAL-c3834-70b60acee790aec46bb31d7108ffb1cf28617ac8ad58306b200cecaf7c53cb013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.201700124$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.201700124$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Tripathi, Mukesh</creatorcontrib><creatorcontrib>Mittelberger, Andreas</creatorcontrib><creatorcontrib>Mustonen, Kimmo</creatorcontrib><creatorcontrib>Mangler, Clemens</creatorcontrib><creatorcontrib>Kotakoski, Jani</creatorcontrib><creatorcontrib>Meyer, Jannik C.</creatorcontrib><creatorcontrib>Susi, Toma</creatorcontrib><title>Cleaning graphene: Comparing heat treatments in air and in vacuum</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Surface impurities and contamination often seriously degrade the properties of two‐dimensional materials such as graphene. To remove contamination, thermal annealing is commonly used. We present a comparative analysis of annealing treatments in air and in vacuum, both ex situ and “pre situ,” where an ultra‐high vacuum treatment chamber is directly connected to an aberration‐corrected scanning transmission electron microscope. While ex situ treatments do remove contamination, it is challenging to obtain atomically clean surfaces after ambient transfer. However, pre situ cleaning with radiative or laser heating appears reliable and well suited to clean graphene without damage to most suspended areas.
Pre situ annealing of typical dirty graphene samples yields atomically clean areas several hundred nm2 in size.
One‐atom‐thick graphene is often covered by adsorbed contamination, often making it challenging to observe and manipulate its atomic structure. By heating the sample in a vacuum chamber directly connected to an electron microscope, it is possible to obtain large atomically clean areas to enable many further studies.</description><subject>Aberration</subject><subject>Annealing</subject><subject>Cleaning</subject><subject>Contamination</subject><subject>Graphene</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>High vacuum</subject><subject>Laser beam heating</subject><subject>scanning transmission electron microscopy</subject><subject>Solid state physics</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK5ePRc8d50kbZN6W4pfsKC4eg7TNN3t0qY1aZX9721ZWY9eZh7De_PgR8g1hQUFYLed927BgAoAyqITMqMyYWHCBJwedRydkwvvdwBxKiI-I8usNmgruwk2DrutseYuyNqmQzfdtgb7oHfjbIztfVDZACsXoC0m-YV6GJpLclZi7c3V756Tj4f79-wpXL08PmfLVai55FEoIE8AtTEiBTQ6SvKc00JQkGWZU10ymVCBWmIRSw5JzgC00VgKHXOdA-VzcnP427n2czC-V7t2cHasVDRlqaBMCjm6FgeXdu3Iw5Sqc1WDbq8oqAmTmjCpI6YxkB4C31Vt9v-41et6_faX_QEPk2w0</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Tripathi, Mukesh</creator><creator>Mittelberger, Andreas</creator><creator>Mustonen, Kimmo</creator><creator>Mangler, Clemens</creator><creator>Kotakoski, Jani</creator><creator>Meyer, Jannik C.</creator><creator>Susi, Toma</creator><general>WILEY?VCH Verlag Berlin GmbH</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201708</creationdate><title>Cleaning graphene: Comparing heat treatments in air and in vacuum</title><author>Tripathi, Mukesh ; Mittelberger, Andreas ; Mustonen, Kimmo ; Mangler, Clemens ; Kotakoski, Jani ; Meyer, Jannik C. ; Susi, Toma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-70b60acee790aec46bb31d7108ffb1cf28617ac8ad58306b200cecaf7c53cb013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aberration</topic><topic>Annealing</topic><topic>Cleaning</topic><topic>Contamination</topic><topic>Graphene</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>High vacuum</topic><topic>Laser beam heating</topic><topic>scanning transmission electron microscopy</topic><topic>Solid state physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tripathi, Mukesh</creatorcontrib><creatorcontrib>Mittelberger, Andreas</creatorcontrib><creatorcontrib>Mustonen, Kimmo</creatorcontrib><creatorcontrib>Mangler, Clemens</creatorcontrib><creatorcontrib>Kotakoski, Jani</creatorcontrib><creatorcontrib>Meyer, Jannik C.</creatorcontrib><creatorcontrib>Susi, Toma</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tripathi, Mukesh</au><au>Mittelberger, Andreas</au><au>Mustonen, Kimmo</au><au>Mangler, Clemens</au><au>Kotakoski, Jani</au><au>Meyer, Jannik C.</au><au>Susi, Toma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cleaning graphene: Comparing heat treatments in air and in vacuum</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2017-08</date><risdate>2017</risdate><volume>11</volume><issue>8</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Surface impurities and contamination often seriously degrade the properties of two‐dimensional materials such as graphene. To remove contamination, thermal annealing is commonly used. We present a comparative analysis of annealing treatments in air and in vacuum, both ex situ and “pre situ,” where an ultra‐high vacuum treatment chamber is directly connected to an aberration‐corrected scanning transmission electron microscope. While ex situ treatments do remove contamination, it is challenging to obtain atomically clean surfaces after ambient transfer. However, pre situ cleaning with radiative or laser heating appears reliable and well suited to clean graphene without damage to most suspended areas.
Pre situ annealing of typical dirty graphene samples yields atomically clean areas several hundred nm2 in size.
One‐atom‐thick graphene is often covered by adsorbed contamination, often making it challenging to observe and manipulate its atomic structure. By heating the sample in a vacuum chamber directly connected to an electron microscope, it is possible to obtain large atomically clean areas to enable many further studies.</abstract><cop>Berlin</cop><pub>WILEY?VCH Verlag Berlin GmbH</pub><doi>10.1002/pssr.201700124</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6254 |
ispartof | Physica status solidi. PSS-RRL. Rapid research letters, 2017-08, Vol.11 (8), p.n/a |
issn | 1862-6254 1862-6270 |
language | eng |
recordid | cdi_proquest_journals_1929712878 |
source | Wiley-Blackwell Journals |
subjects | Aberration Annealing Cleaning Contamination Graphene Heat treating Heat treatment High vacuum Laser beam heating scanning transmission electron microscopy Solid state physics |
title | Cleaning graphene: Comparing heat treatments in air and in vacuum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cleaning%20graphene:%20Comparing%20heat%20treatments%20in%20air%20and%20in%20vacuum&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Tripathi,%20Mukesh&rft.date=2017-08&rft.volume=11&rft.issue=8&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.201700124&rft_dat=%3Cproquest_cross%3E1929712878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929712878&rft_id=info:pmid/&rfr_iscdi=true |