Leveraging Time Prediction and Error Compensation to Enhance the Scalability of Parallel Multi-Core Simulations

Due to synchronization overhead, it is challenging to apply the parallel simulation technique of multi-core processors at larger scales. Although the use of lax synchronization schemes could reduce overhead and balance the load between synchronous points, it introduces timing error and deteriorates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2017-09, Vol.28 (9), p.2553-2566
Hauptverfasser: Zhu, Xiaodong, Wu, Junmin, Li, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2566
container_issue 9
container_start_page 2553
container_title IEEE transactions on parallel and distributed systems
container_volume 28
creator Zhu, Xiaodong
Wu, Junmin
Li, Tao
description Due to synchronization overhead, it is challenging to apply the parallel simulation technique of multi-core processors at larger scales. Although the use of lax synchronization schemes could reduce overhead and balance the load between synchronous points, it introduces timing error and deteriorates simulation accuracy. Through observing the propagation paths of errors, we find that these paths always concentrate on some pivotal events. Based on the observation, we design a delay-calibration mechanism to alleviate errors. We decouple the timing and functional processes of the pivotal events, leveraging prediction technique of delays to connect two categories of the processes. Errors are traced throughout the timing processes of the pivotal events, and are deducted from the predicted delays before the delays are consumed by the functional processes. Therefore, through cleaning the errors at the successive pivot events, the mechanism decreases the simulated time deviations efficiently. Since the prediction and error deduction processes do not have any constraint on synchronizations, our approach largely maintains the scalability of lax synchronization schemes. Furthermore, our proposal is orthogonal to other parallel simulation techniques and can be used in conjunction with them. Experimental results show that error compensation improves the accuracy of lax synchronized simulations by 68 percent and achieves 97.8 percent accuracy when combined with an enhanced lax synchronization.
doi_str_mv 10.1109/TPDS.2016.2612633
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1928839058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7574321</ieee_id><sourcerecordid>1928839058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d17e287ab59c3df2359cc16a83cbf543e99ceaa0359d4dcdcadd6470bb1078fe3</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWKsPIN4EvN6aSfaUS1nrASoWWq-XbDLbpuxuarIV-vZuD3j1D8P3z8BHyD2wCQCTT8v5y2LCGaQTngJPhbggI0iSPOKQi8thZnESSQ7ymtyEsGEM4oTFI-Jm-IterWy3okvbIp17NFb31nVUdYZOvXeeFq7dYhfUcd07Ou3WqtNI-zXShVaNqmxj-z11NZ0rr5oGG_q5a3obFc4PiG13zbEcbslVrZqAd-cck-_X6bJ4j2Zfbx_F8yzSXIo-MpAhzzNVJVILU3MxpIZU5UJXdRILlFKjUmzYm9hoo5UxaZyxqgKW5TWKMXk83d1697PD0Jcbt_Pd8LIEyfNcSJbkAwUnSnsXgse63HrbKr8vgZUHr-XBa3nwWp69Dp2HU8ci4j-fJVksOIg_fCh18A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928839058</pqid></control><display><type>article</type><title>Leveraging Time Prediction and Error Compensation to Enhance the Scalability of Parallel Multi-Core Simulations</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Xiaodong ; Wu, Junmin ; Li, Tao</creator><creatorcontrib>Zhu, Xiaodong ; Wu, Junmin ; Li, Tao</creatorcontrib><description>Due to synchronization overhead, it is challenging to apply the parallel simulation technique of multi-core processors at larger scales. Although the use of lax synchronization schemes could reduce overhead and balance the load between synchronous points, it introduces timing error and deteriorates simulation accuracy. Through observing the propagation paths of errors, we find that these paths always concentrate on some pivotal events. Based on the observation, we design a delay-calibration mechanism to alleviate errors. We decouple the timing and functional processes of the pivotal events, leveraging prediction technique of delays to connect two categories of the processes. Errors are traced throughout the timing processes of the pivotal events, and are deducted from the predicted delays before the delays are consumed by the functional processes. Therefore, through cleaning the errors at the successive pivot events, the mechanism decreases the simulated time deviations efficiently. Since the prediction and error deduction processes do not have any constraint on synchronizations, our approach largely maintains the scalability of lax synchronization schemes. Furthermore, our proposal is orthogonal to other parallel simulation techniques and can be used in conjunction with them. Experimental results show that error compensation improves the accuracy of lax synchronized simulations by 68 percent and achieves 97.8 percent accuracy when combined with an enhanced lax synchronization.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2016.2612633</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Categories ; Deduction ; Delays ; Error compensation ; Errors ; Load modeling ; Microprocessors ; Multi-core architecture modeling ; Multicore processing ; parallel simulation ; Predictions ; Processors ; Simulation ; Synchronism ; Synchronization ; Time measurement ; timing error</subject><ispartof>IEEE transactions on parallel and distributed systems, 2017-09, Vol.28 (9), p.2553-2566</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d17e287ab59c3df2359cc16a83cbf543e99ceaa0359d4dcdcadd6470bb1078fe3</citedby><cites>FETCH-LOGICAL-c293t-d17e287ab59c3df2359cc16a83cbf543e99ceaa0359d4dcdcadd6470bb1078fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7574321$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7574321$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Xiaodong</creatorcontrib><creatorcontrib>Wu, Junmin</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><title>Leveraging Time Prediction and Error Compensation to Enhance the Scalability of Parallel Multi-Core Simulations</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Due to synchronization overhead, it is challenging to apply the parallel simulation technique of multi-core processors at larger scales. Although the use of lax synchronization schemes could reduce overhead and balance the load between synchronous points, it introduces timing error and deteriorates simulation accuracy. Through observing the propagation paths of errors, we find that these paths always concentrate on some pivotal events. Based on the observation, we design a delay-calibration mechanism to alleviate errors. We decouple the timing and functional processes of the pivotal events, leveraging prediction technique of delays to connect two categories of the processes. Errors are traced throughout the timing processes of the pivotal events, and are deducted from the predicted delays before the delays are consumed by the functional processes. Therefore, through cleaning the errors at the successive pivot events, the mechanism decreases the simulated time deviations efficiently. Since the prediction and error deduction processes do not have any constraint on synchronizations, our approach largely maintains the scalability of lax synchronization schemes. Furthermore, our proposal is orthogonal to other parallel simulation techniques and can be used in conjunction with them. Experimental results show that error compensation improves the accuracy of lax synchronized simulations by 68 percent and achieves 97.8 percent accuracy when combined with an enhanced lax synchronization.</description><subject>Accuracy</subject><subject>Categories</subject><subject>Deduction</subject><subject>Delays</subject><subject>Error compensation</subject><subject>Errors</subject><subject>Load modeling</subject><subject>Microprocessors</subject><subject>Multi-core architecture modeling</subject><subject>Multicore processing</subject><subject>parallel simulation</subject><subject>Predictions</subject><subject>Processors</subject><subject>Simulation</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Time measurement</subject><subject>timing error</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEQhoMoWKsPIN4EvN6aSfaUS1nrASoWWq-XbDLbpuxuarIV-vZuD3j1D8P3z8BHyD2wCQCTT8v5y2LCGaQTngJPhbggI0iSPOKQi8thZnESSQ7ymtyEsGEM4oTFI-Jm-IterWy3okvbIp17NFb31nVUdYZOvXeeFq7dYhfUcd07Ou3WqtNI-zXShVaNqmxj-z11NZ0rr5oGG_q5a3obFc4PiG13zbEcbslVrZqAd-cck-_X6bJ4j2Zfbx_F8yzSXIo-MpAhzzNVJVILU3MxpIZU5UJXdRILlFKjUmzYm9hoo5UxaZyxqgKW5TWKMXk83d1697PD0Jcbt_Pd8LIEyfNcSJbkAwUnSnsXgse63HrbKr8vgZUHr-XBa3nwWp69Dp2HU8ci4j-fJVksOIg_fCh18A</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Zhu, Xiaodong</creator><creator>Wu, Junmin</creator><creator>Li, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170901</creationdate><title>Leveraging Time Prediction and Error Compensation to Enhance the Scalability of Parallel Multi-Core Simulations</title><author>Zhu, Xiaodong ; Wu, Junmin ; Li, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d17e287ab59c3df2359cc16a83cbf543e99ceaa0359d4dcdcadd6470bb1078fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Categories</topic><topic>Deduction</topic><topic>Delays</topic><topic>Error compensation</topic><topic>Errors</topic><topic>Load modeling</topic><topic>Microprocessors</topic><topic>Multi-core architecture modeling</topic><topic>Multicore processing</topic><topic>parallel simulation</topic><topic>Predictions</topic><topic>Processors</topic><topic>Simulation</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Time measurement</topic><topic>timing error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaodong</creatorcontrib><creatorcontrib>Wu, Junmin</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Xiaodong</au><au>Wu, Junmin</au><au>Li, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging Time Prediction and Error Compensation to Enhance the Scalability of Parallel Multi-Core Simulations</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>28</volume><issue>9</issue><spage>2553</spage><epage>2566</epage><pages>2553-2566</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Due to synchronization overhead, it is challenging to apply the parallel simulation technique of multi-core processors at larger scales. Although the use of lax synchronization schemes could reduce overhead and balance the load between synchronous points, it introduces timing error and deteriorates simulation accuracy. Through observing the propagation paths of errors, we find that these paths always concentrate on some pivotal events. Based on the observation, we design a delay-calibration mechanism to alleviate errors. We decouple the timing and functional processes of the pivotal events, leveraging prediction technique of delays to connect two categories of the processes. Errors are traced throughout the timing processes of the pivotal events, and are deducted from the predicted delays before the delays are consumed by the functional processes. Therefore, through cleaning the errors at the successive pivot events, the mechanism decreases the simulated time deviations efficiently. Since the prediction and error deduction processes do not have any constraint on synchronizations, our approach largely maintains the scalability of lax synchronization schemes. Furthermore, our proposal is orthogonal to other parallel simulation techniques and can be used in conjunction with them. Experimental results show that error compensation improves the accuracy of lax synchronized simulations by 68 percent and achieves 97.8 percent accuracy when combined with an enhanced lax synchronization.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2016.2612633</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2017-09, Vol.28 (9), p.2553-2566
issn 1045-9219
1558-2183
language eng
recordid cdi_proquest_journals_1928839058
source IEEE Electronic Library (IEL)
subjects Accuracy
Categories
Deduction
Delays
Error compensation
Errors
Load modeling
Microprocessors
Multi-core architecture modeling
Multicore processing
parallel simulation
Predictions
Processors
Simulation
Synchronism
Synchronization
Time measurement
timing error
title Leveraging Time Prediction and Error Compensation to Enhance the Scalability of Parallel Multi-Core Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20Time%20Prediction%20and%20Error%20Compensation%20to%20Enhance%20the%20Scalability%20of%20Parallel%20Multi-Core%20Simulations&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Zhu,%20Xiaodong&rft.date=2017-09-01&rft.volume=28&rft.issue=9&rft.spage=2553&rft.epage=2566&rft.pages=2553-2566&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2016.2612633&rft_dat=%3Cproquest_RIE%3E1928839058%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928839058&rft_id=info:pmid/&rft_ieee_id=7574321&rfr_iscdi=true