The Hölder exponent of some Fourier series
In this paper we study the local regularity of fractional integrals of Fourier series using several definitions of the Hölder exponent. We especially consider series coming from fractional integrals of modular forms. Our results show that in general, cusp forms give rise to pure fractals (as opposed...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2017-08, Vol.23 (4), p.758-777 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 777 |
---|---|
container_issue | 4 |
container_start_page | 758 |
container_title | The Journal of fourier analysis and applications |
container_volume | 23 |
creator | Chamizo, Fernando Petrykiewicz, Izabela Ruiz-Cabello, Serafín |
description | In this paper we study the local regularity of fractional integrals of Fourier series using several definitions of the Hölder exponent. We especially consider series coming from fractional integrals of modular forms. Our results show that in general, cusp forms give rise to pure fractals (as opposed to multifractals). We include explicit examples and computer plots. |
doi_str_mv | 10.1007/s00041-016-9488-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1928819442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718428872</galeid><sourcerecordid>A718428872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-9b1d7a80a3d991f90f48a6aceec44e997cd2d867f6a513a7e32bbd602564b7013</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaRWKKUmdjxz7KqKEWqxKasLScZl1RtUuxWgotxAS6Gq7Bgg7x4I_t9M-PH2C3CBAHUQwQAgTmgzI3QOhdnbIQlx7zUJZ6nGqRJtTSX7CrGDUCBXPERu1-9Ubb4_to2FDL62PcddYes91nsd5TN-2No00OkJPGaXXi3jXTzq2P2On9czRb58uXpeTZd5jUvy0NuKmyU0-B4Ywx6A15oJ11NVAtBxqi6KRotlZeuRO4U8aKqGglFKUWlAPmY3Q1996F_P1I82E3ao0sjLZpCazRCFMk1GVxrtyXbdr4_BFen09CurdM_fJvupwq1SIw6ATgAdehjDOTtPrQ7Fz4tgj2FaIcQbQrRnkK0IjHFwMTk7dYU_qzyL_QDNvdy_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928819442</pqid></control><display><type>article</type><title>The Hölder exponent of some Fourier series</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chamizo, Fernando ; Petrykiewicz, Izabela ; Ruiz-Cabello, Serafín</creator><creatorcontrib>Chamizo, Fernando ; Petrykiewicz, Izabela ; Ruiz-Cabello, Serafín</creatorcontrib><description>In this paper we study the local regularity of fractional integrals of Fourier series using several definitions of the Hölder exponent. We especially consider series coming from fractional integrals of modular forms. Our results show that in general, cusp forms give rise to pure fractals (as opposed to multifractals). We include explicit examples and computer plots.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-016-9488-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Fourier Analysis ; Fourier series ; Integrals ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2017-08, Vol.23 (4), p.758-777</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-9b1d7a80a3d991f90f48a6aceec44e997cd2d867f6a513a7e32bbd602564b7013</citedby><cites>FETCH-LOGICAL-c355t-9b1d7a80a3d991f90f48a6aceec44e997cd2d867f6a513a7e32bbd602564b7013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-016-9488-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-016-9488-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chamizo, Fernando</creatorcontrib><creatorcontrib>Petrykiewicz, Izabela</creatorcontrib><creatorcontrib>Ruiz-Cabello, Serafín</creatorcontrib><title>The Hölder exponent of some Fourier series</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>In this paper we study the local regularity of fractional integrals of Fourier series using several definitions of the Hölder exponent. We especially consider series coming from fractional integrals of modular forms. Our results show that in general, cusp forms give rise to pure fractals (as opposed to multifractals). We include explicit examples and computer plots.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Fourier Analysis</subject><subject>Fourier series</subject><subject>Integrals</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaRWKKUmdjxz7KqKEWqxKasLScZl1RtUuxWgotxAS6Gq7Bgg7x4I_t9M-PH2C3CBAHUQwQAgTmgzI3QOhdnbIQlx7zUJZ6nGqRJtTSX7CrGDUCBXPERu1-9Ubb4_to2FDL62PcddYes91nsd5TN-2No00OkJPGaXXi3jXTzq2P2On9czRb58uXpeTZd5jUvy0NuKmyU0-B4Ywx6A15oJ11NVAtBxqi6KRotlZeuRO4U8aKqGglFKUWlAPmY3Q1996F_P1I82E3ao0sjLZpCazRCFMk1GVxrtyXbdr4_BFen09CurdM_fJvupwq1SIw6ATgAdehjDOTtPrQ7Fz4tgj2FaIcQbQrRnkK0IjHFwMTk7dYU_qzyL_QDNvdy_w</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Chamizo, Fernando</creator><creator>Petrykiewicz, Izabela</creator><creator>Ruiz-Cabello, Serafín</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>The Hölder exponent of some Fourier series</title><author>Chamizo, Fernando ; Petrykiewicz, Izabela ; Ruiz-Cabello, Serafín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-9b1d7a80a3d991f90f48a6aceec44e997cd2d867f6a513a7e32bbd602564b7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Fourier Analysis</topic><topic>Fourier series</topic><topic>Integrals</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chamizo, Fernando</creatorcontrib><creatorcontrib>Petrykiewicz, Izabela</creatorcontrib><creatorcontrib>Ruiz-Cabello, Serafín</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamizo, Fernando</au><au>Petrykiewicz, Izabela</au><au>Ruiz-Cabello, Serafín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hölder exponent of some Fourier series</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>23</volume><issue>4</issue><spage>758</spage><epage>777</epage><pages>758-777</pages><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>In this paper we study the local regularity of fractional integrals of Fourier series using several definitions of the Hölder exponent. We especially consider series coming from fractional integrals of modular forms. Our results show that in general, cusp forms give rise to pure fractals (as opposed to multifractals). We include explicit examples and computer plots.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-016-9488-4</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-5869 |
ispartof | The Journal of fourier analysis and applications, 2017-08, Vol.23 (4), p.758-777 |
issn | 1069-5869 1531-5851 |
language | eng |
recordid | cdi_proquest_journals_1928819442 |
source | SpringerLink Journals - AutoHoldings |
subjects | Abstract Harmonic Analysis Approximations and Expansions Fourier Analysis Fourier series Integrals Mathematical Methods in Physics Mathematics Mathematics and Statistics Partial Differential Equations Signal,Image and Speech Processing |
title | The Hölder exponent of some Fourier series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20H%C3%B6lder%20exponent%20of%20some%20Fourier%20series&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Chamizo,%20Fernando&rft.date=2017-08-01&rft.volume=23&rft.issue=4&rft.spage=758&rft.epage=777&rft.pages=758-777&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-016-9488-4&rft_dat=%3Cgale_proqu%3EA718428872%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928819442&rft_id=info:pmid/&rft_galeid=A718428872&rfr_iscdi=true |