The Hölder exponent of some Fourier series

In this paper we study the local regularity of fractional integrals of Fourier series using several definitions of the Hölder exponent. We especially consider series coming from fractional integrals of modular forms. Our results show that in general, cusp forms give rise to pure fractals (as opposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2017-08, Vol.23 (4), p.758-777
Hauptverfasser: Chamizo, Fernando, Petrykiewicz, Izabela, Ruiz-Cabello, Serafín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 777
container_issue 4
container_start_page 758
container_title The Journal of fourier analysis and applications
container_volume 23
creator Chamizo, Fernando
Petrykiewicz, Izabela
Ruiz-Cabello, Serafín
description In this paper we study the local regularity of fractional integrals of Fourier series using several definitions of the Hölder exponent. We especially consider series coming from fractional integrals of modular forms. Our results show that in general, cusp forms give rise to pure fractals (as opposed to multifractals). We include explicit examples and computer plots.
doi_str_mv 10.1007/s00041-016-9488-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1928819442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718428872</galeid><sourcerecordid>A718428872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-9b1d7a80a3d991f90f48a6aceec44e997cd2d867f6a513a7e32bbd602564b7013</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaRWKKUmdjxz7KqKEWqxKasLScZl1RtUuxWgotxAS6Gq7Bgg7x4I_t9M-PH2C3CBAHUQwQAgTmgzI3QOhdnbIQlx7zUJZ6nGqRJtTSX7CrGDUCBXPERu1-9Ubb4_to2FDL62PcddYes91nsd5TN-2No00OkJPGaXXi3jXTzq2P2On9czRb58uXpeTZd5jUvy0NuKmyU0-B4Ywx6A15oJ11NVAtBxqi6KRotlZeuRO4U8aKqGglFKUWlAPmY3Q1996F_P1I82E3ao0sjLZpCazRCFMk1GVxrtyXbdr4_BFen09CurdM_fJvupwq1SIw6ATgAdehjDOTtPrQ7Fz4tgj2FaIcQbQrRnkK0IjHFwMTk7dYU_qzyL_QDNvdy_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928819442</pqid></control><display><type>article</type><title>The Hölder exponent of some Fourier series</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chamizo, Fernando ; Petrykiewicz, Izabela ; Ruiz-Cabello, Serafín</creator><creatorcontrib>Chamizo, Fernando ; Petrykiewicz, Izabela ; Ruiz-Cabello, Serafín</creatorcontrib><description>In this paper we study the local regularity of fractional integrals of Fourier series using several definitions of the Hölder exponent. We especially consider series coming from fractional integrals of modular forms. Our results show that in general, cusp forms give rise to pure fractals (as opposed to multifractals). We include explicit examples and computer plots.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-016-9488-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Fourier Analysis ; Fourier series ; Integrals ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2017-08, Vol.23 (4), p.758-777</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-9b1d7a80a3d991f90f48a6aceec44e997cd2d867f6a513a7e32bbd602564b7013</citedby><cites>FETCH-LOGICAL-c355t-9b1d7a80a3d991f90f48a6aceec44e997cd2d867f6a513a7e32bbd602564b7013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-016-9488-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-016-9488-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chamizo, Fernando</creatorcontrib><creatorcontrib>Petrykiewicz, Izabela</creatorcontrib><creatorcontrib>Ruiz-Cabello, Serafín</creatorcontrib><title>The Hölder exponent of some Fourier series</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>In this paper we study the local regularity of fractional integrals of Fourier series using several definitions of the Hölder exponent. We especially consider series coming from fractional integrals of modular forms. Our results show that in general, cusp forms give rise to pure fractals (as opposed to multifractals). We include explicit examples and computer plots.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Fourier Analysis</subject><subject>Fourier series</subject><subject>Integrals</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaRWKKUmdjxz7KqKEWqxKasLScZl1RtUuxWgotxAS6Gq7Bgg7x4I_t9M-PH2C3CBAHUQwQAgTmgzI3QOhdnbIQlx7zUJZ6nGqRJtTSX7CrGDUCBXPERu1-9Ubb4_to2FDL62PcddYes91nsd5TN-2No00OkJPGaXXi3jXTzq2P2On9czRb58uXpeTZd5jUvy0NuKmyU0-B4Ywx6A15oJ11NVAtBxqi6KRotlZeuRO4U8aKqGglFKUWlAPmY3Q1996F_P1I82E3ao0sjLZpCazRCFMk1GVxrtyXbdr4_BFen09CurdM_fJvupwq1SIw6ATgAdehjDOTtPrQ7Fz4tgj2FaIcQbQrRnkK0IjHFwMTk7dYU_qzyL_QDNvdy_w</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Chamizo, Fernando</creator><creator>Petrykiewicz, Izabela</creator><creator>Ruiz-Cabello, Serafín</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>The Hölder exponent of some Fourier series</title><author>Chamizo, Fernando ; Petrykiewicz, Izabela ; Ruiz-Cabello, Serafín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-9b1d7a80a3d991f90f48a6aceec44e997cd2d867f6a513a7e32bbd602564b7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Fourier Analysis</topic><topic>Fourier series</topic><topic>Integrals</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chamizo, Fernando</creatorcontrib><creatorcontrib>Petrykiewicz, Izabela</creatorcontrib><creatorcontrib>Ruiz-Cabello, Serafín</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamizo, Fernando</au><au>Petrykiewicz, Izabela</au><au>Ruiz-Cabello, Serafín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hölder exponent of some Fourier series</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>23</volume><issue>4</issue><spage>758</spage><epage>777</epage><pages>758-777</pages><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>In this paper we study the local regularity of fractional integrals of Fourier series using several definitions of the Hölder exponent. We especially consider series coming from fractional integrals of modular forms. Our results show that in general, cusp forms give rise to pure fractals (as opposed to multifractals). We include explicit examples and computer plots.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-016-9488-4</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2017-08, Vol.23 (4), p.758-777
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_1928819442
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Approximations and Expansions
Fourier Analysis
Fourier series
Integrals
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Signal,Image and Speech Processing
title The Hölder exponent of some Fourier series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20H%C3%B6lder%20exponent%20of%20some%20Fourier%20series&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Chamizo,%20Fernando&rft.date=2017-08-01&rft.volume=23&rft.issue=4&rft.spage=758&rft.epage=777&rft.pages=758-777&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-016-9488-4&rft_dat=%3Cgale_proqu%3EA718428872%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928819442&rft_id=info:pmid/&rft_galeid=A718428872&rfr_iscdi=true