Fast Planar Harmonic Deformations with Alternating Tangential Projections
We present a planar harmonic cage‐based deformation method with local injectivity and bounded distortion guarantees, that is significantly faster than state‐of‐the‐art methods with similar guarantees, and allows for real‐time interaction. With a convex proxy for a near‐convex characterization of the...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2017-08, Vol.36 (5), p.175-188 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 5 |
container_start_page | 175 |
container_title | Computer graphics forum |
container_volume | 36 |
creator | Hefetz, Eden Fedida Chien, Edward Weber, Ofir |
description | We present a planar harmonic cage‐based deformation method with local injectivity and bounded distortion guarantees, that is significantly faster than state‐of‐the‐art methods with similar guarantees, and allows for real‐time interaction. With a convex proxy for a near‐convex characterization of the bounded distortion harmonic mapping space from [LW16], we utilize a modified alternating projection method (referred to as ATP) to project to this proxy. ATP draws inspiration from [KABL15] and restricts every other projection to lie in a tangential hyperplane. In contrast to [KABL15], our convex setting allows us to show that ATP is provably convergent (and is locally injective). Compared to the standard alternating projection method, it demonstrates superior convergence in fewer iterations, and it is also embarrassingly parallel, allowing for straightforward GPU implementation. Both of these factors combine to result in unprecedented speed. The convergence proof generalizes to arbitrary pairs of intersecting convex sets, suggesting potential use in other applications. Additional theoretical results sharpen the near‐convex characterization that we use and demonstrate that it is homeomorphic to the bounded distortion harmonic mapping space (instead of merely being bijective). |
doi_str_mv | 10.1111/cgf.13255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1928374304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928374304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2975-fc6e9cd96a19ef35fb890dc9fd5b67593f0eceeb240175af5044d41c017517933</originalsourceid><addsrcrecordid>eNp1kEtvAiEQgEnTJrW2h_4Dkp56WIUFFjkaWx-JST3YM0EWtrtZwcIa478X3V47l3nkm8nkA-AVoxFOMdaVHWGSM3YHBpgWPJsUTNyDAcKp5oixR_AUY4MQorxgA7Caq9jBTaucCnCpwt67WsMPY33Yq672LsJT3f3AaduZ4NLEVXCrXGVcV6sWboJvjL5xz-DBqjaal788BN_zz-1sma2_FqvZdJ3pXHCWWV0YoUtRKCyMJczuJgKVWtiS7QrOBLHIaGN2OUWYM2UZorSkWF87zAUhQ_DW3z0E_3s0sZONP6bX2iixyCeEU4Joot57SgcfYzBWHkK9V-EsMZJXUzKZkjdTiR337Kluzfl_UM4W837jAkuKahI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928374304</pqid></control><display><type>article</type><title>Fast Planar Harmonic Deformations with Alternating Tangential Projections</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Hefetz, Eden Fedida ; Chien, Edward ; Weber, Ofir</creator><creatorcontrib>Hefetz, Eden Fedida ; Chien, Edward ; Weber, Ofir</creatorcontrib><description>We present a planar harmonic cage‐based deformation method with local injectivity and bounded distortion guarantees, that is significantly faster than state‐of‐the‐art methods with similar guarantees, and allows for real‐time interaction. With a convex proxy for a near‐convex characterization of the bounded distortion harmonic mapping space from [LW16], we utilize a modified alternating projection method (referred to as ATP) to project to this proxy. ATP draws inspiration from [KABL15] and restricts every other projection to lie in a tangential hyperplane. In contrast to [KABL15], our convex setting allows us to show that ATP is provably convergent (and is locally injective). Compared to the standard alternating projection method, it demonstrates superior convergence in fewer iterations, and it is also embarrassingly parallel, allowing for straightforward GPU implementation. Both of these factors combine to result in unprecedented speed. The convergence proof generalizes to arbitrary pairs of intersecting convex sets, suggesting potential use in other applications. Additional theoretical results sharpen the near‐convex characterization that we use and demonstrate that it is homeomorphic to the bounded distortion harmonic mapping space (instead of merely being bijective).</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.13255</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Categories and Subject Descriptors (according to ACM CCS) ; Convergence ; Convexity ; Deformation ; Distortion ; G.1.6 [Numerical Analysis]: Optimization—Convex programming ; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Geometric algorithms, languages, and systems; Hierarchy and geometric transformations ; I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism—Animation ; Mapping ; Projection</subject><ispartof>Computer graphics forum, 2017-08, Vol.36 (5), p.175-188</ispartof><rights>2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.</rights><rights>2017 The Eurographics Association and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2975-fc6e9cd96a19ef35fb890dc9fd5b67593f0eceeb240175af5044d41c017517933</citedby><cites>FETCH-LOGICAL-c2975-fc6e9cd96a19ef35fb890dc9fd5b67593f0eceeb240175af5044d41c017517933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.13255$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.13255$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hefetz, Eden Fedida</creatorcontrib><creatorcontrib>Chien, Edward</creatorcontrib><creatorcontrib>Weber, Ofir</creatorcontrib><title>Fast Planar Harmonic Deformations with Alternating Tangential Projections</title><title>Computer graphics forum</title><description>We present a planar harmonic cage‐based deformation method with local injectivity and bounded distortion guarantees, that is significantly faster than state‐of‐the‐art methods with similar guarantees, and allows for real‐time interaction. With a convex proxy for a near‐convex characterization of the bounded distortion harmonic mapping space from [LW16], we utilize a modified alternating projection method (referred to as ATP) to project to this proxy. ATP draws inspiration from [KABL15] and restricts every other projection to lie in a tangential hyperplane. In contrast to [KABL15], our convex setting allows us to show that ATP is provably convergent (and is locally injective). Compared to the standard alternating projection method, it demonstrates superior convergence in fewer iterations, and it is also embarrassingly parallel, allowing for straightforward GPU implementation. Both of these factors combine to result in unprecedented speed. The convergence proof generalizes to arbitrary pairs of intersecting convex sets, suggesting potential use in other applications. Additional theoretical results sharpen the near‐convex characterization that we use and demonstrate that it is homeomorphic to the bounded distortion harmonic mapping space (instead of merely being bijective).</description><subject>Categories and Subject Descriptors (according to ACM CCS)</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Deformation</subject><subject>Distortion</subject><subject>G.1.6 [Numerical Analysis]: Optimization—Convex programming</subject><subject>I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Geometric algorithms, languages, and systems; Hierarchy and geometric transformations</subject><subject>I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism—Animation</subject><subject>Mapping</subject><subject>Projection</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtvAiEQgEnTJrW2h_4Dkp56WIUFFjkaWx-JST3YM0EWtrtZwcIa478X3V47l3nkm8nkA-AVoxFOMdaVHWGSM3YHBpgWPJsUTNyDAcKp5oixR_AUY4MQorxgA7Caq9jBTaucCnCpwt67WsMPY33Yq672LsJT3f3AaduZ4NLEVXCrXGVcV6sWboJvjL5xz-DBqjaal788BN_zz-1sma2_FqvZdJ3pXHCWWV0YoUtRKCyMJczuJgKVWtiS7QrOBLHIaGN2OUWYM2UZorSkWF87zAUhQ_DW3z0E_3s0sZONP6bX2iixyCeEU4Joot57SgcfYzBWHkK9V-EsMZJXUzKZkjdTiR337Kluzfl_UM4W837jAkuKahI</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Hefetz, Eden Fedida</creator><creator>Chien, Edward</creator><creator>Weber, Ofir</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201708</creationdate><title>Fast Planar Harmonic Deformations with Alternating Tangential Projections</title><author>Hefetz, Eden Fedida ; Chien, Edward ; Weber, Ofir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2975-fc6e9cd96a19ef35fb890dc9fd5b67593f0eceeb240175af5044d41c017517933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Categories and Subject Descriptors (according to ACM CCS)</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Deformation</topic><topic>Distortion</topic><topic>G.1.6 [Numerical Analysis]: Optimization—Convex programming</topic><topic>I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Geometric algorithms, languages, and systems; Hierarchy and geometric transformations</topic><topic>I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism—Animation</topic><topic>Mapping</topic><topic>Projection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hefetz, Eden Fedida</creatorcontrib><creatorcontrib>Chien, Edward</creatorcontrib><creatorcontrib>Weber, Ofir</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hefetz, Eden Fedida</au><au>Chien, Edward</au><au>Weber, Ofir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Planar Harmonic Deformations with Alternating Tangential Projections</atitle><jtitle>Computer graphics forum</jtitle><date>2017-08</date><risdate>2017</risdate><volume>36</volume><issue>5</issue><spage>175</spage><epage>188</epage><pages>175-188</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>We present a planar harmonic cage‐based deformation method with local injectivity and bounded distortion guarantees, that is significantly faster than state‐of‐the‐art methods with similar guarantees, and allows for real‐time interaction. With a convex proxy for a near‐convex characterization of the bounded distortion harmonic mapping space from [LW16], we utilize a modified alternating projection method (referred to as ATP) to project to this proxy. ATP draws inspiration from [KABL15] and restricts every other projection to lie in a tangential hyperplane. In contrast to [KABL15], our convex setting allows us to show that ATP is provably convergent (and is locally injective). Compared to the standard alternating projection method, it demonstrates superior convergence in fewer iterations, and it is also embarrassingly parallel, allowing for straightforward GPU implementation. Both of these factors combine to result in unprecedented speed. The convergence proof generalizes to arbitrary pairs of intersecting convex sets, suggesting potential use in other applications. Additional theoretical results sharpen the near‐convex characterization that we use and demonstrate that it is homeomorphic to the bounded distortion harmonic mapping space (instead of merely being bijective).</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.13255</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2017-08, Vol.36 (5), p.175-188 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_journals_1928374304 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Categories and Subject Descriptors (according to ACM CCS) Convergence Convexity Deformation Distortion G.1.6 [Numerical Analysis]: Optimization—Convex programming I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Geometric algorithms, languages, and systems Hierarchy and geometric transformations I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism—Animation Mapping Projection |
title | Fast Planar Harmonic Deformations with Alternating Tangential Projections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Planar%20Harmonic%20Deformations%20with%20Alternating%20Tangential%20Projections&rft.jtitle=Computer%20graphics%20forum&rft.au=Hefetz,%20Eden%20Fedida&rft.date=2017-08&rft.volume=36&rft.issue=5&rft.spage=175&rft.epage=188&rft.pages=175-188&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.13255&rft_dat=%3Cproquest_cross%3E1928374304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928374304&rft_id=info:pmid/&rfr_iscdi=true |