A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea
While satellite remote sensing has become a very useful tool contributing to assessments of sea surface partial pressure of carbon dioxide (pCO2) that subsequently allow quantification of air‐sea CO2 flux, the application of empirical approaches in coastal oceans has proven challenging owing to the...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Oceans 2015-03, Vol.120 (3), p.2331-2349 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2349 |
---|---|
container_issue | 3 |
container_start_page | 2331 |
container_title | Journal of geophysical research. Oceans |
container_volume | 120 |
creator | Bai, Yan Cai, Wei-Jun He, Xianqiang Zhai, Weidong Pan, Delu Dai, Minhan Yu, Peisong |
description | While satellite remote sensing has become a very useful tool contributing to assessments of sea surface partial pressure of carbon dioxide (pCO2) that subsequently allow quantification of air‐sea CO2 flux, the application of empirical approaches in coastal oceans has proven challenging owing to the interaction of multiple controlling factors. We propose a “mechanistic semi‐analytic algorithm” (MeSAA) to estimate sea surface pCO2 in river‐dominated coastal oceans using satellite data. Observed pCO2 can be analytically expressed as the sum of individual components controlled by major factors such as thermodynamics (or temperature), mixing, and biology. With marine carbonate system calculations, temperature and mixing effects can be predicted using thermodynamic principles and by assuming conservative two end‐member mixing of total dissolved inorganic carbon and total alkalinity (e.g., the Changjiang River and Kuroshio water in the East China Sea, ECS). Next, an integral expression for pCO2 drawdown due to biological effects can be parameterized using the chlorophyll a concentration (chla). We demonstrate the validity and applicability of the algorithm in the ECS during summertime. Sensitivity analysis shows that errors in empirical coefficients and three input satellite parameters (salinity, SST, chla) have limited influence on the algorithm, and satellite‐derived pCO2 is consistent with underway data, even though no in situ pCO2 data from the ECS shelves was used to train the algorithm. Our algorithm has more physical and biogeochemical mechanistic meaning than empirical methods, and should be applicable to other similar systems.
Key Points:
A semi‐analytic algorithm for satellite‐derived pCO2 in the East China Sea
Carbonate calculations with satellite‐derived salinity used as a mixing index
Biological effect on pCO2 is parameterized by an integral expression of chla |
doi_str_mv | 10.1002/2014JC010632 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1928332538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3655706951</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2086-2d224e3b525e6b1612587780d44088bf279d12d0311b4815127f0fb6a57b8f7e3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiNUJKrSWx_AUs8BzzixHW7bqGy7VFQCKiQulpNMui5JvNhZIK_BE-NqUcWpc5kZzff_0sxk2RnwN8A5vkUOxabmwKXAF9kxgqzyCis4eqpV-So7jfGBp9Cgi6I6zv6s2Ejt1k4uzq5lkUaX28kOS-rskGbz1nes94EFGv1Mw5KYKbrpPmXL4j70tiW2q2-RuYkF95NC3vnRTXamjrXexjn5-JbsFN-xFWttJBbnfbewPviRzVtilwli9TZp2Geyr7OXvR0inf7LJ9nd-8sv9VV-c7u-rlc3uUOuZY4dYkGiKbEk2YAELLVSmndFwbVuelRVB9hxAdAUGkpA1fO-kbZUje4ViZPs_OC7C_7HnuJsHvw-pN2jgQq1EFgK_SwllRBcCJCJEgfqlxtoMbvgRhsWA9w8_sb8_xuzWX-qEUA-qvKDKh2ffj-pbPhukrUqzdePa8Orzbf1RX1hPoi_fKaQZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673303316</pqid></control><display><type>article</type><title>A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Bai, Yan ; Cai, Wei-Jun ; He, Xianqiang ; Zhai, Weidong ; Pan, Delu ; Dai, Minhan ; Yu, Peisong</creator><creatorcontrib>Bai, Yan ; Cai, Wei-Jun ; He, Xianqiang ; Zhai, Weidong ; Pan, Delu ; Dai, Minhan ; Yu, Peisong</creatorcontrib><description>While satellite remote sensing has become a very useful tool contributing to assessments of sea surface partial pressure of carbon dioxide (pCO2) that subsequently allow quantification of air‐sea CO2 flux, the application of empirical approaches in coastal oceans has proven challenging owing to the interaction of multiple controlling factors. We propose a “mechanistic semi‐analytic algorithm” (MeSAA) to estimate sea surface pCO2 in river‐dominated coastal oceans using satellite data. Observed pCO2 can be analytically expressed as the sum of individual components controlled by major factors such as thermodynamics (or temperature), mixing, and biology. With marine carbonate system calculations, temperature and mixing effects can be predicted using thermodynamic principles and by assuming conservative two end‐member mixing of total dissolved inorganic carbon and total alkalinity (e.g., the Changjiang River and Kuroshio water in the East China Sea, ECS). Next, an integral expression for pCO2 drawdown due to biological effects can be parameterized using the chlorophyll a concentration (chla). We demonstrate the validity and applicability of the algorithm in the ECS during summertime. Sensitivity analysis shows that errors in empirical coefficients and three input satellite parameters (salinity, SST, chla) have limited influence on the algorithm, and satellite‐derived pCO2 is consistent with underway data, even though no in situ pCO2 data from the ECS shelves was used to train the algorithm. Our algorithm has more physical and biogeochemical mechanistic meaning than empirical methods, and should be applicable to other similar systems.
Key Points:
A semi‐analytic algorithm for satellite‐derived pCO2 in the East China Sea
Carbonate calculations with satellite‐derived salinity used as a mixing index
Biological effect on pCO2 is parameterized by an integral expression of chla</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1002/2014JC010632</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Alkalinity ; aquatic pCO2 ; aquatic pCO2, satellite remote sensing, semi‐analytic algorithm, marine carbonate system ; Biogeochemistry ; Biological effects ; Biology ; Carbon dioxide ; Carbon dioxide flux ; Carbonates ; Case studies ; Chlorophyll ; Chlorophyll a ; Coastal environments ; Coefficients ; Components ; Data processing ; Dissolved inorganic carbon ; Drawdown ; East China Sea ; Empirical analysis ; Geophysics ; Inorganic carbon ; Integrals ; marginal sea ; Marine biology ; marine carbonate system ; Mathematical analysis ; Mathematical models ; Oceans ; Partial pressure ; Remote sensing ; Rivers ; Salinity ; Salinity effects ; Satellite data ; Satellite observation ; satellite remote sensing ; Satellites ; Sea surface ; Sea surface temperature ; semi-analytic algorithm ; Sensitivity analysis ; Temperature ; Temperature effects ; Thermodynamics</subject><ispartof>Journal of geophysical research. Oceans, 2015-03, Vol.120 (3), p.2331-2349</ispartof><rights>2015. The Authors.</rights><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JC010632$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JC010632$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Bai, Yan</creatorcontrib><creatorcontrib>Cai, Wei-Jun</creatorcontrib><creatorcontrib>He, Xianqiang</creatorcontrib><creatorcontrib>Zhai, Weidong</creatorcontrib><creatorcontrib>Pan, Delu</creatorcontrib><creatorcontrib>Dai, Minhan</creatorcontrib><creatorcontrib>Yu, Peisong</creatorcontrib><title>A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea</title><title>Journal of geophysical research. Oceans</title><addtitle>J. Geophys. Res. Oceans</addtitle><description>While satellite remote sensing has become a very useful tool contributing to assessments of sea surface partial pressure of carbon dioxide (pCO2) that subsequently allow quantification of air‐sea CO2 flux, the application of empirical approaches in coastal oceans has proven challenging owing to the interaction of multiple controlling factors. We propose a “mechanistic semi‐analytic algorithm” (MeSAA) to estimate sea surface pCO2 in river‐dominated coastal oceans using satellite data. Observed pCO2 can be analytically expressed as the sum of individual components controlled by major factors such as thermodynamics (or temperature), mixing, and biology. With marine carbonate system calculations, temperature and mixing effects can be predicted using thermodynamic principles and by assuming conservative two end‐member mixing of total dissolved inorganic carbon and total alkalinity (e.g., the Changjiang River and Kuroshio water in the East China Sea, ECS). Next, an integral expression for pCO2 drawdown due to biological effects can be parameterized using the chlorophyll a concentration (chla). We demonstrate the validity and applicability of the algorithm in the ECS during summertime. Sensitivity analysis shows that errors in empirical coefficients and three input satellite parameters (salinity, SST, chla) have limited influence on the algorithm, and satellite‐derived pCO2 is consistent with underway data, even though no in situ pCO2 data from the ECS shelves was used to train the algorithm. Our algorithm has more physical and biogeochemical mechanistic meaning than empirical methods, and should be applicable to other similar systems.
Key Points:
A semi‐analytic algorithm for satellite‐derived pCO2 in the East China Sea
Carbonate calculations with satellite‐derived salinity used as a mixing index
Biological effect on pCO2 is parameterized by an integral expression of chla</description><subject>Algorithms</subject><subject>Alkalinity</subject><subject>aquatic pCO2</subject><subject>aquatic pCO2, satellite remote sensing, semi‐analytic algorithm, marine carbonate system</subject><subject>Biogeochemistry</subject><subject>Biological effects</subject><subject>Biology</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide flux</subject><subject>Carbonates</subject><subject>Case studies</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Coastal environments</subject><subject>Coefficients</subject><subject>Components</subject><subject>Data processing</subject><subject>Dissolved inorganic carbon</subject><subject>Drawdown</subject><subject>East China Sea</subject><subject>Empirical analysis</subject><subject>Geophysics</subject><subject>Inorganic carbon</subject><subject>Integrals</subject><subject>marginal sea</subject><subject>Marine biology</subject><subject>marine carbonate system</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oceans</subject><subject>Partial pressure</subject><subject>Remote sensing</subject><subject>Rivers</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Satellite data</subject><subject>Satellite observation</subject><subject>satellite remote sensing</subject><subject>Satellites</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>semi-analytic algorithm</subject><subject>Sensitivity analysis</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thermodynamics</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kcFu1DAQhiNUJKrSWx_AUs8BzzixHW7bqGy7VFQCKiQulpNMui5JvNhZIK_BE-NqUcWpc5kZzff_0sxk2RnwN8A5vkUOxabmwKXAF9kxgqzyCis4eqpV-So7jfGBp9Cgi6I6zv6s2Ejt1k4uzq5lkUaX28kOS-rskGbz1nes94EFGv1Mw5KYKbrpPmXL4j70tiW2q2-RuYkF95NC3vnRTXamjrXexjn5-JbsFN-xFWttJBbnfbewPviRzVtilwli9TZp2Geyr7OXvR0inf7LJ9nd-8sv9VV-c7u-rlc3uUOuZY4dYkGiKbEk2YAELLVSmndFwbVuelRVB9hxAdAUGkpA1fO-kbZUje4ViZPs_OC7C_7HnuJsHvw-pN2jgQq1EFgK_SwllRBcCJCJEgfqlxtoMbvgRhsWA9w8_sb8_xuzWX-qEUA-qvKDKh2ffj-pbPhukrUqzdePa8Orzbf1RX1hPoi_fKaQZA</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Bai, Yan</creator><creator>Cai, Wei-Jun</creator><creator>He, Xianqiang</creator><creator>Zhai, Weidong</creator><creator>Pan, Delu</creator><creator>Dai, Minhan</creator><creator>Yu, Peisong</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>201503</creationdate><title>A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea</title><author>Bai, Yan ; Cai, Wei-Jun ; He, Xianqiang ; Zhai, Weidong ; Pan, Delu ; Dai, Minhan ; Yu, Peisong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2086-2d224e3b525e6b1612587780d44088bf279d12d0311b4815127f0fb6a57b8f7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Alkalinity</topic><topic>aquatic pCO2</topic><topic>aquatic pCO2, satellite remote sensing, semi‐analytic algorithm, marine carbonate system</topic><topic>Biogeochemistry</topic><topic>Biological effects</topic><topic>Biology</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide flux</topic><topic>Carbonates</topic><topic>Case studies</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Coastal environments</topic><topic>Coefficients</topic><topic>Components</topic><topic>Data processing</topic><topic>Dissolved inorganic carbon</topic><topic>Drawdown</topic><topic>East China Sea</topic><topic>Empirical analysis</topic><topic>Geophysics</topic><topic>Inorganic carbon</topic><topic>Integrals</topic><topic>marginal sea</topic><topic>Marine biology</topic><topic>marine carbonate system</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oceans</topic><topic>Partial pressure</topic><topic>Remote sensing</topic><topic>Rivers</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Satellite data</topic><topic>Satellite observation</topic><topic>satellite remote sensing</topic><topic>Satellites</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>semi-analytic algorithm</topic><topic>Sensitivity analysis</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yan</creatorcontrib><creatorcontrib>Cai, Wei-Jun</creatorcontrib><creatorcontrib>He, Xianqiang</creatorcontrib><creatorcontrib>Zhai, Weidong</creatorcontrib><creatorcontrib>Pan, Delu</creatorcontrib><creatorcontrib>Dai, Minhan</creatorcontrib><creatorcontrib>Yu, Peisong</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yan</au><au>Cai, Wei-Jun</au><au>He, Xianqiang</au><au>Zhai, Weidong</au><au>Pan, Delu</au><au>Dai, Minhan</au><au>Yu, Peisong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><addtitle>J. Geophys. Res. Oceans</addtitle><date>2015-03</date><risdate>2015</risdate><volume>120</volume><issue>3</issue><spage>2331</spage><epage>2349</epage><pages>2331-2349</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>While satellite remote sensing has become a very useful tool contributing to assessments of sea surface partial pressure of carbon dioxide (pCO2) that subsequently allow quantification of air‐sea CO2 flux, the application of empirical approaches in coastal oceans has proven challenging owing to the interaction of multiple controlling factors. We propose a “mechanistic semi‐analytic algorithm” (MeSAA) to estimate sea surface pCO2 in river‐dominated coastal oceans using satellite data. Observed pCO2 can be analytically expressed as the sum of individual components controlled by major factors such as thermodynamics (or temperature), mixing, and biology. With marine carbonate system calculations, temperature and mixing effects can be predicted using thermodynamic principles and by assuming conservative two end‐member mixing of total dissolved inorganic carbon and total alkalinity (e.g., the Changjiang River and Kuroshio water in the East China Sea, ECS). Next, an integral expression for pCO2 drawdown due to biological effects can be parameterized using the chlorophyll a concentration (chla). We demonstrate the validity and applicability of the algorithm in the ECS during summertime. Sensitivity analysis shows that errors in empirical coefficients and three input satellite parameters (salinity, SST, chla) have limited influence on the algorithm, and satellite‐derived pCO2 is consistent with underway data, even though no in situ pCO2 data from the ECS shelves was used to train the algorithm. Our algorithm has more physical and biogeochemical mechanistic meaning than empirical methods, and should be applicable to other similar systems.
Key Points:
A semi‐analytic algorithm for satellite‐derived pCO2 in the East China Sea
Carbonate calculations with satellite‐derived salinity used as a mixing index
Biological effect on pCO2 is parameterized by an integral expression of chla</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JC010632</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9275 |
ispartof | Journal of geophysical research. Oceans, 2015-03, Vol.120 (3), p.2331-2349 |
issn | 2169-9275 2169-9291 |
language | eng |
recordid | cdi_proquest_journals_1928332538 |
source | Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Algorithms Alkalinity aquatic pCO2 aquatic pCO2, satellite remote sensing, semi‐analytic algorithm, marine carbonate system Biogeochemistry Biological effects Biology Carbon dioxide Carbon dioxide flux Carbonates Case studies Chlorophyll Chlorophyll a Coastal environments Coefficients Components Data processing Dissolved inorganic carbon Drawdown East China Sea Empirical analysis Geophysics Inorganic carbon Integrals marginal sea Marine biology marine carbonate system Mathematical analysis Mathematical models Oceans Partial pressure Remote sensing Rivers Salinity Salinity effects Satellite data Satellite observation satellite remote sensing Satellites Sea surface Sea surface temperature semi-analytic algorithm Sensitivity analysis Temperature Temperature effects Thermodynamics |
title | A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanistic%20semi-analytical%20method%20for%20remotely%20sensing%20sea%20surface%20pCO2%20in%20river-dominated%20coastal%20oceans:%20A%20case%20study%20from%20the%20East%20China%20Sea&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Bai,%20Yan&rft.date=2015-03&rft.volume=120&rft.issue=3&rft.spage=2331&rft.epage=2349&rft.pages=2331-2349&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1002/2014JC010632&rft_dat=%3Cproquest_wiley%3E3655706951%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673303316&rft_id=info:pmid/&rfr_iscdi=true |