A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea

While satellite remote sensing has become a very useful tool contributing to assessments of sea surface partial pressure of carbon dioxide (pCO2) that subsequently allow quantification of air‐sea CO2 flux, the application of empirical approaches in coastal oceans has proven challenging owing to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2015-03, Vol.120 (3), p.2331-2349
Hauptverfasser: Bai, Yan, Cai, Wei-Jun, He, Xianqiang, Zhai, Weidong, Pan, Delu, Dai, Minhan, Yu, Peisong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2349
container_issue 3
container_start_page 2331
container_title Journal of geophysical research. Oceans
container_volume 120
creator Bai, Yan
Cai, Wei-Jun
He, Xianqiang
Zhai, Weidong
Pan, Delu
Dai, Minhan
Yu, Peisong
description While satellite remote sensing has become a very useful tool contributing to assessments of sea surface partial pressure of carbon dioxide (pCO2) that subsequently allow quantification of air‐sea CO2 flux, the application of empirical approaches in coastal oceans has proven challenging owing to the interaction of multiple controlling factors. We propose a “mechanistic semi‐analytic algorithm” (MeSAA) to estimate sea surface pCO2 in river‐dominated coastal oceans using satellite data. Observed pCO2 can be analytically expressed as the sum of individual components controlled by major factors such as thermodynamics (or temperature), mixing, and biology. With marine carbonate system calculations, temperature and mixing effects can be predicted using thermodynamic principles and by assuming conservative two end‐member mixing of total dissolved inorganic carbon and total alkalinity (e.g., the Changjiang River and Kuroshio water in the East China Sea, ECS). Next, an integral expression for pCO2 drawdown due to biological effects can be parameterized using the chlorophyll a concentration (chla). We demonstrate the validity and applicability of the algorithm in the ECS during summertime. Sensitivity analysis shows that errors in empirical coefficients and three input satellite parameters (salinity, SST, chla) have limited influence on the algorithm, and satellite‐derived pCO2 is consistent with underway data, even though no in situ pCO2 data from the ECS shelves was used to train the algorithm. Our algorithm has more physical and biogeochemical mechanistic meaning than empirical methods, and should be applicable to other similar systems. Key Points: A semi‐analytic algorithm for satellite‐derived pCO2 in the East China Sea Carbonate calculations with satellite‐derived salinity used as a mixing index Biological effect on pCO2 is parameterized by an integral expression of chla
doi_str_mv 10.1002/2014JC010632
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1928332538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3655706951</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2086-2d224e3b525e6b1612587780d44088bf279d12d0311b4815127f0fb6a57b8f7e3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiNUJKrSWx_AUs8BzzixHW7bqGy7VFQCKiQulpNMui5JvNhZIK_BE-NqUcWpc5kZzff_0sxk2RnwN8A5vkUOxabmwKXAF9kxgqzyCis4eqpV-So7jfGBp9Cgi6I6zv6s2Ejt1k4uzq5lkUaX28kOS-rskGbz1nes94EFGv1Mw5KYKbrpPmXL4j70tiW2q2-RuYkF95NC3vnRTXamjrXexjn5-JbsFN-xFWttJBbnfbewPviRzVtilwli9TZp2Geyr7OXvR0inf7LJ9nd-8sv9VV-c7u-rlc3uUOuZY4dYkGiKbEk2YAELLVSmndFwbVuelRVB9hxAdAUGkpA1fO-kbZUje4ViZPs_OC7C_7HnuJsHvw-pN2jgQq1EFgK_SwllRBcCJCJEgfqlxtoMbvgRhsWA9w8_sb8_xuzWX-qEUA-qvKDKh2ffj-pbPhukrUqzdePa8Orzbf1RX1hPoi_fKaQZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673303316</pqid></control><display><type>article</type><title>A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Bai, Yan ; Cai, Wei-Jun ; He, Xianqiang ; Zhai, Weidong ; Pan, Delu ; Dai, Minhan ; Yu, Peisong</creator><creatorcontrib>Bai, Yan ; Cai, Wei-Jun ; He, Xianqiang ; Zhai, Weidong ; Pan, Delu ; Dai, Minhan ; Yu, Peisong</creatorcontrib><description>While satellite remote sensing has become a very useful tool contributing to assessments of sea surface partial pressure of carbon dioxide (pCO2) that subsequently allow quantification of air‐sea CO2 flux, the application of empirical approaches in coastal oceans has proven challenging owing to the interaction of multiple controlling factors. We propose a “mechanistic semi‐analytic algorithm” (MeSAA) to estimate sea surface pCO2 in river‐dominated coastal oceans using satellite data. Observed pCO2 can be analytically expressed as the sum of individual components controlled by major factors such as thermodynamics (or temperature), mixing, and biology. With marine carbonate system calculations, temperature and mixing effects can be predicted using thermodynamic principles and by assuming conservative two end‐member mixing of total dissolved inorganic carbon and total alkalinity (e.g., the Changjiang River and Kuroshio water in the East China Sea, ECS). Next, an integral expression for pCO2 drawdown due to biological effects can be parameterized using the chlorophyll a concentration (chla). We demonstrate the validity and applicability of the algorithm in the ECS during summertime. Sensitivity analysis shows that errors in empirical coefficients and three input satellite parameters (salinity, SST, chla) have limited influence on the algorithm, and satellite‐derived pCO2 is consistent with underway data, even though no in situ pCO2 data from the ECS shelves was used to train the algorithm. Our algorithm has more physical and biogeochemical mechanistic meaning than empirical methods, and should be applicable to other similar systems. Key Points: A semi‐analytic algorithm for satellite‐derived pCO2 in the East China Sea Carbonate calculations with satellite‐derived salinity used as a mixing index Biological effect on pCO2 is parameterized by an integral expression of chla</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1002/2014JC010632</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Alkalinity ; aquatic pCO2 ; aquatic pCO2, satellite remote sensing, semi‐analytic algorithm, marine carbonate system ; Biogeochemistry ; Biological effects ; Biology ; Carbon dioxide ; Carbon dioxide flux ; Carbonates ; Case studies ; Chlorophyll ; Chlorophyll a ; Coastal environments ; Coefficients ; Components ; Data processing ; Dissolved inorganic carbon ; Drawdown ; East China Sea ; Empirical analysis ; Geophysics ; Inorganic carbon ; Integrals ; marginal sea ; Marine biology ; marine carbonate system ; Mathematical analysis ; Mathematical models ; Oceans ; Partial pressure ; Remote sensing ; Rivers ; Salinity ; Salinity effects ; Satellite data ; Satellite observation ; satellite remote sensing ; Satellites ; Sea surface ; Sea surface temperature ; semi-analytic algorithm ; Sensitivity analysis ; Temperature ; Temperature effects ; Thermodynamics</subject><ispartof>Journal of geophysical research. Oceans, 2015-03, Vol.120 (3), p.2331-2349</ispartof><rights>2015. The Authors.</rights><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JC010632$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JC010632$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Bai, Yan</creatorcontrib><creatorcontrib>Cai, Wei-Jun</creatorcontrib><creatorcontrib>He, Xianqiang</creatorcontrib><creatorcontrib>Zhai, Weidong</creatorcontrib><creatorcontrib>Pan, Delu</creatorcontrib><creatorcontrib>Dai, Minhan</creatorcontrib><creatorcontrib>Yu, Peisong</creatorcontrib><title>A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea</title><title>Journal of geophysical research. Oceans</title><addtitle>J. Geophys. Res. Oceans</addtitle><description>While satellite remote sensing has become a very useful tool contributing to assessments of sea surface partial pressure of carbon dioxide (pCO2) that subsequently allow quantification of air‐sea CO2 flux, the application of empirical approaches in coastal oceans has proven challenging owing to the interaction of multiple controlling factors. We propose a “mechanistic semi‐analytic algorithm” (MeSAA) to estimate sea surface pCO2 in river‐dominated coastal oceans using satellite data. Observed pCO2 can be analytically expressed as the sum of individual components controlled by major factors such as thermodynamics (or temperature), mixing, and biology. With marine carbonate system calculations, temperature and mixing effects can be predicted using thermodynamic principles and by assuming conservative two end‐member mixing of total dissolved inorganic carbon and total alkalinity (e.g., the Changjiang River and Kuroshio water in the East China Sea, ECS). Next, an integral expression for pCO2 drawdown due to biological effects can be parameterized using the chlorophyll a concentration (chla). We demonstrate the validity and applicability of the algorithm in the ECS during summertime. Sensitivity analysis shows that errors in empirical coefficients and three input satellite parameters (salinity, SST, chla) have limited influence on the algorithm, and satellite‐derived pCO2 is consistent with underway data, even though no in situ pCO2 data from the ECS shelves was used to train the algorithm. Our algorithm has more physical and biogeochemical mechanistic meaning than empirical methods, and should be applicable to other similar systems. Key Points: A semi‐analytic algorithm for satellite‐derived pCO2 in the East China Sea Carbonate calculations with satellite‐derived salinity used as a mixing index Biological effect on pCO2 is parameterized by an integral expression of chla</description><subject>Algorithms</subject><subject>Alkalinity</subject><subject>aquatic pCO2</subject><subject>aquatic pCO2, satellite remote sensing, semi‐analytic algorithm, marine carbonate system</subject><subject>Biogeochemistry</subject><subject>Biological effects</subject><subject>Biology</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide flux</subject><subject>Carbonates</subject><subject>Case studies</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Coastal environments</subject><subject>Coefficients</subject><subject>Components</subject><subject>Data processing</subject><subject>Dissolved inorganic carbon</subject><subject>Drawdown</subject><subject>East China Sea</subject><subject>Empirical analysis</subject><subject>Geophysics</subject><subject>Inorganic carbon</subject><subject>Integrals</subject><subject>marginal sea</subject><subject>Marine biology</subject><subject>marine carbonate system</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oceans</subject><subject>Partial pressure</subject><subject>Remote sensing</subject><subject>Rivers</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Satellite data</subject><subject>Satellite observation</subject><subject>satellite remote sensing</subject><subject>Satellites</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>semi-analytic algorithm</subject><subject>Sensitivity analysis</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thermodynamics</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kcFu1DAQhiNUJKrSWx_AUs8BzzixHW7bqGy7VFQCKiQulpNMui5JvNhZIK_BE-NqUcWpc5kZzff_0sxk2RnwN8A5vkUOxabmwKXAF9kxgqzyCis4eqpV-So7jfGBp9Cgi6I6zv6s2Ejt1k4uzq5lkUaX28kOS-rskGbz1nes94EFGv1Mw5KYKbrpPmXL4j70tiW2q2-RuYkF95NC3vnRTXamjrXexjn5-JbsFN-xFWttJBbnfbewPviRzVtilwli9TZp2Geyr7OXvR0inf7LJ9nd-8sv9VV-c7u-rlc3uUOuZY4dYkGiKbEk2YAELLVSmndFwbVuelRVB9hxAdAUGkpA1fO-kbZUje4ViZPs_OC7C_7HnuJsHvw-pN2jgQq1EFgK_SwllRBcCJCJEgfqlxtoMbvgRhsWA9w8_sb8_xuzWX-qEUA-qvKDKh2ffj-pbPhukrUqzdePa8Orzbf1RX1hPoi_fKaQZA</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Bai, Yan</creator><creator>Cai, Wei-Jun</creator><creator>He, Xianqiang</creator><creator>Zhai, Weidong</creator><creator>Pan, Delu</creator><creator>Dai, Minhan</creator><creator>Yu, Peisong</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>201503</creationdate><title>A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea</title><author>Bai, Yan ; Cai, Wei-Jun ; He, Xianqiang ; Zhai, Weidong ; Pan, Delu ; Dai, Minhan ; Yu, Peisong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2086-2d224e3b525e6b1612587780d44088bf279d12d0311b4815127f0fb6a57b8f7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Alkalinity</topic><topic>aquatic pCO2</topic><topic>aquatic pCO2, satellite remote sensing, semi‐analytic algorithm, marine carbonate system</topic><topic>Biogeochemistry</topic><topic>Biological effects</topic><topic>Biology</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide flux</topic><topic>Carbonates</topic><topic>Case studies</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Coastal environments</topic><topic>Coefficients</topic><topic>Components</topic><topic>Data processing</topic><topic>Dissolved inorganic carbon</topic><topic>Drawdown</topic><topic>East China Sea</topic><topic>Empirical analysis</topic><topic>Geophysics</topic><topic>Inorganic carbon</topic><topic>Integrals</topic><topic>marginal sea</topic><topic>Marine biology</topic><topic>marine carbonate system</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oceans</topic><topic>Partial pressure</topic><topic>Remote sensing</topic><topic>Rivers</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Satellite data</topic><topic>Satellite observation</topic><topic>satellite remote sensing</topic><topic>Satellites</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>semi-analytic algorithm</topic><topic>Sensitivity analysis</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yan</creatorcontrib><creatorcontrib>Cai, Wei-Jun</creatorcontrib><creatorcontrib>He, Xianqiang</creatorcontrib><creatorcontrib>Zhai, Weidong</creatorcontrib><creatorcontrib>Pan, Delu</creatorcontrib><creatorcontrib>Dai, Minhan</creatorcontrib><creatorcontrib>Yu, Peisong</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yan</au><au>Cai, Wei-Jun</au><au>He, Xianqiang</au><au>Zhai, Weidong</au><au>Pan, Delu</au><au>Dai, Minhan</au><au>Yu, Peisong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><addtitle>J. Geophys. Res. Oceans</addtitle><date>2015-03</date><risdate>2015</risdate><volume>120</volume><issue>3</issue><spage>2331</spage><epage>2349</epage><pages>2331-2349</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>While satellite remote sensing has become a very useful tool contributing to assessments of sea surface partial pressure of carbon dioxide (pCO2) that subsequently allow quantification of air‐sea CO2 flux, the application of empirical approaches in coastal oceans has proven challenging owing to the interaction of multiple controlling factors. We propose a “mechanistic semi‐analytic algorithm” (MeSAA) to estimate sea surface pCO2 in river‐dominated coastal oceans using satellite data. Observed pCO2 can be analytically expressed as the sum of individual components controlled by major factors such as thermodynamics (or temperature), mixing, and biology. With marine carbonate system calculations, temperature and mixing effects can be predicted using thermodynamic principles and by assuming conservative two end‐member mixing of total dissolved inorganic carbon and total alkalinity (e.g., the Changjiang River and Kuroshio water in the East China Sea, ECS). Next, an integral expression for pCO2 drawdown due to biological effects can be parameterized using the chlorophyll a concentration (chla). We demonstrate the validity and applicability of the algorithm in the ECS during summertime. Sensitivity analysis shows that errors in empirical coefficients and three input satellite parameters (salinity, SST, chla) have limited influence on the algorithm, and satellite‐derived pCO2 is consistent with underway data, even though no in situ pCO2 data from the ECS shelves was used to train the algorithm. Our algorithm has more physical and biogeochemical mechanistic meaning than empirical methods, and should be applicable to other similar systems. Key Points: A semi‐analytic algorithm for satellite‐derived pCO2 in the East China Sea Carbonate calculations with satellite‐derived salinity used as a mixing index Biological effect on pCO2 is parameterized by an integral expression of chla</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JC010632</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9275
ispartof Journal of geophysical research. Oceans, 2015-03, Vol.120 (3), p.2331-2349
issn 2169-9275
2169-9291
language eng
recordid cdi_proquest_journals_1928332538
source Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Algorithms
Alkalinity
aquatic pCO2
aquatic pCO2, satellite remote sensing, semi‐analytic algorithm, marine carbonate system
Biogeochemistry
Biological effects
Biology
Carbon dioxide
Carbon dioxide flux
Carbonates
Case studies
Chlorophyll
Chlorophyll a
Coastal environments
Coefficients
Components
Data processing
Dissolved inorganic carbon
Drawdown
East China Sea
Empirical analysis
Geophysics
Inorganic carbon
Integrals
marginal sea
Marine biology
marine carbonate system
Mathematical analysis
Mathematical models
Oceans
Partial pressure
Remote sensing
Rivers
Salinity
Salinity effects
Satellite data
Satellite observation
satellite remote sensing
Satellites
Sea surface
Sea surface temperature
semi-analytic algorithm
Sensitivity analysis
Temperature
Temperature effects
Thermodynamics
title A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanistic%20semi-analytical%20method%20for%20remotely%20sensing%20sea%20surface%20pCO2%20in%20river-dominated%20coastal%20oceans:%20A%20case%20study%20from%20the%20East%20China%20Sea&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Bai,%20Yan&rft.date=2015-03&rft.volume=120&rft.issue=3&rft.spage=2331&rft.epage=2349&rft.pages=2331-2349&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1002/2014JC010632&rft_dat=%3Cproquest_wiley%3E3655706951%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673303316&rft_id=info:pmid/&rfr_iscdi=true