Effects of whistler mode hiss waves in March 2013

We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2017-07, Vol.122 (7), p.7433-7462
Hauptverfasser: Ripoll, J.‐F., Santolík, O., Reeves, G. D., Kurth, W. S., Denton, M. H., Loridan, V., Thaller, S. A., Kletzing, C. A., Turner, D. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7462
container_issue 7
container_start_page 7433
container_title Journal of geophysical research. Space physics
container_volume 122
creator Ripoll, J.‐F.
Santolík, O.
Reeves, G. D.
Kurth, W. S.
Denton, M. H.
Loridan, V.
Thaller, S. A.
Kletzing, C. A.
Turner, D. L.
description We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 h and 0.1 L shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L ~ 5 up to ~2 MeV at L ~ 2 and stop abruptly, similarly to the observed energy‐dependent inner belt edge. Periods when the plasmasphere extends beyond L ~ 5 favor long‐lasting hiss losses from the outer belt. Such loss rates are embedded in a reduced Fokker‐Planck code and validated against Magnetic Electron and Ion Spectrometer observations of the belts at all energy. Results are complemented with a sensitivity study involving different radial diffusion and lifetime models. Validation is carried out globally at all L shells and energies. The good agreement between simulations and observations demonstrates that hiss waves drive the slot formation during quiet times. Combined with transport, they sculpt the energy structure of the outer belt into an “S shape.” Low energy electrons (
doi_str_mv 10.1002/2017JA024139
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1928082300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928082300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-6f3b164c401527d2ec80948a873f4bbe3d7169d9f4d1b49daff13bf1c6f55603</originalsourceid><addsrcrecordid>eNp9kEFrAjEQhUNpoWK99QcEeu22M5nsbnIUsVqxFIr3sJtNcEVdm2jFf9-ILfTUucy84WPe8Bi7R3hCAPEsAMvZEIRE0lesJ7DQmZYgrn9nUnDLBjGuIJVKK8x7DMfeO7uPvPP8uGzjfu0C33SN40lEfqy-XOTtlr9VwS558qA7duOrdXSDn95ni5fxYjTN5u-T19FwnlkqibLCU42FtBIwF2UjnFWgpapUSV7WtaOmTC802ssGa6mbynuk2qMtfJ4XQH32cDm7C93nwcW9WXWHsE2OBrVQoATBmXq8UDZ0MQbnzS60myqcDII5x2L-xpJwuuDHdu1O_7JmNvkY5lQg0Tfs0l_n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928082300</pqid></control><display><type>article</type><title>Effects of whistler mode hiss waves in March 2013</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><creator>Ripoll, J.‐F. ; Santolík, O. ; Reeves, G. D. ; Kurth, W. S. ; Denton, M. H. ; Loridan, V. ; Thaller, S. A. ; Kletzing, C. A. ; Turner, D. L.</creator><creatorcontrib>Ripoll, J.‐F. ; Santolík, O. ; Reeves, G. D. ; Kurth, W. S. ; Denton, M. H. ; Loridan, V. ; Thaller, S. A. ; Kletzing, C. A. ; Turner, D. L.</creatorcontrib><description>We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 h and 0.1 L shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L ~ 5 up to ~2 MeV at L ~ 2 and stop abruptly, similarly to the observed energy‐dependent inner belt edge. Periods when the plasmasphere extends beyond L ~ 5 favor long‐lasting hiss losses from the outer belt. Such loss rates are embedded in a reduced Fokker‐Planck code and validated against Magnetic Electron and Ion Spectrometer observations of the belts at all energy. Results are complemented with a sensitivity study involving different radial diffusion and lifetime models. Validation is carried out globally at all L shells and energies. The good agreement between simulations and observations demonstrates that hiss waves drive the slot formation during quiet times. Combined with transport, they sculpt the energy structure of the outer belt into an “S shape.” Low energy electrons (&lt;0.3 MeV) are less subject to hiss scattering below L = 4. In contrast, 0.3–1.5 MeV electrons evolve in an environment that depopulates them as they migrate from L ~ 5 to L ~ 2.5. Ultrarelativistic electrons are not affected by hiss losses until L ~ 2–3. Key Points Computations of daily pitch angle diffusion coefficients and electron lifetimes from properties of hiss waves observed in March 2013 Good agreement found between MagEIS flux observations and 1‐D Fokker‐Planck simulations based on our hiss loss term for quiet times Combined with transport, hiss waves loss drives the daily energy structure of the radiation belts, with a typical S‐shaped outer belt</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2017JA024139</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Belt drives ; Computer simulation ; Diffusion coefficient ; diffusion coefficients ; electron lifetimes ; Energy ; energy structure ; Hiss ; MagEIS flux observations ; Plasmasphere ; Radiation ; Radiation belt electrons ; Radiation belts ; Simulation ; Transport ; van Allen probes ; wave particle interactions ; whistler mode hiss</subject><ispartof>Journal of geophysical research. Space physics, 2017-07, Vol.122 (7), p.7433-7462</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-6f3b164c401527d2ec80948a873f4bbe3d7169d9f4d1b49daff13bf1c6f55603</citedby><cites>FETCH-LOGICAL-c3733-6f3b164c401527d2ec80948a873f4bbe3d7169d9f4d1b49daff13bf1c6f55603</cites><orcidid>0000-0002-5471-6202 ; 0000-0002-2425-7818 ; 0000-0002-7985-8098 ; 0000-0002-4891-9273 ; 0000-0003-3144-6542 ; 0000-0002-4136-3348 ; 0000-0002-2452-383X ; 0000-0002-1177-519X ; 0000-0002-1748-3710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JA024139$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JA024139$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Ripoll, J.‐F.</creatorcontrib><creatorcontrib>Santolík, O.</creatorcontrib><creatorcontrib>Reeves, G. D.</creatorcontrib><creatorcontrib>Kurth, W. S.</creatorcontrib><creatorcontrib>Denton, M. H.</creatorcontrib><creatorcontrib>Loridan, V.</creatorcontrib><creatorcontrib>Thaller, S. A.</creatorcontrib><creatorcontrib>Kletzing, C. A.</creatorcontrib><creatorcontrib>Turner, D. L.</creatorcontrib><title>Effects of whistler mode hiss waves in March 2013</title><title>Journal of geophysical research. Space physics</title><description>We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 h and 0.1 L shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L ~ 5 up to ~2 MeV at L ~ 2 and stop abruptly, similarly to the observed energy‐dependent inner belt edge. Periods when the plasmasphere extends beyond L ~ 5 favor long‐lasting hiss losses from the outer belt. Such loss rates are embedded in a reduced Fokker‐Planck code and validated against Magnetic Electron and Ion Spectrometer observations of the belts at all energy. Results are complemented with a sensitivity study involving different radial diffusion and lifetime models. Validation is carried out globally at all L shells and energies. The good agreement between simulations and observations demonstrates that hiss waves drive the slot formation during quiet times. Combined with transport, they sculpt the energy structure of the outer belt into an “S shape.” Low energy electrons (&lt;0.3 MeV) are less subject to hiss scattering below L = 4. In contrast, 0.3–1.5 MeV electrons evolve in an environment that depopulates them as they migrate from L ~ 5 to L ~ 2.5. Ultrarelativistic electrons are not affected by hiss losses until L ~ 2–3. Key Points Computations of daily pitch angle diffusion coefficients and electron lifetimes from properties of hiss waves observed in March 2013 Good agreement found between MagEIS flux observations and 1‐D Fokker‐Planck simulations based on our hiss loss term for quiet times Combined with transport, hiss waves loss drives the daily energy structure of the radiation belts, with a typical S‐shaped outer belt</description><subject>Accuracy</subject><subject>Belt drives</subject><subject>Computer simulation</subject><subject>Diffusion coefficient</subject><subject>diffusion coefficients</subject><subject>electron lifetimes</subject><subject>Energy</subject><subject>energy structure</subject><subject>Hiss</subject><subject>MagEIS flux observations</subject><subject>Plasmasphere</subject><subject>Radiation</subject><subject>Radiation belt electrons</subject><subject>Radiation belts</subject><subject>Simulation</subject><subject>Transport</subject><subject>van Allen probes</subject><subject>wave particle interactions</subject><subject>whistler mode hiss</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrAjEQhUNpoWK99QcEeu22M5nsbnIUsVqxFIr3sJtNcEVdm2jFf9-ILfTUucy84WPe8Bi7R3hCAPEsAMvZEIRE0lesJ7DQmZYgrn9nUnDLBjGuIJVKK8x7DMfeO7uPvPP8uGzjfu0C33SN40lEfqy-XOTtlr9VwS558qA7duOrdXSDn95ni5fxYjTN5u-T19FwnlkqibLCU42FtBIwF2UjnFWgpapUSV7WtaOmTC802ssGa6mbynuk2qMtfJ4XQH32cDm7C93nwcW9WXWHsE2OBrVQoATBmXq8UDZ0MQbnzS60myqcDII5x2L-xpJwuuDHdu1O_7JmNvkY5lQg0Tfs0l_n</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Ripoll, J.‐F.</creator><creator>Santolík, O.</creator><creator>Reeves, G. D.</creator><creator>Kurth, W. S.</creator><creator>Denton, M. H.</creator><creator>Loridan, V.</creator><creator>Thaller, S. A.</creator><creator>Kletzing, C. A.</creator><creator>Turner, D. L.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5471-6202</orcidid><orcidid>https://orcid.org/0000-0002-2425-7818</orcidid><orcidid>https://orcid.org/0000-0002-7985-8098</orcidid><orcidid>https://orcid.org/0000-0002-4891-9273</orcidid><orcidid>https://orcid.org/0000-0003-3144-6542</orcidid><orcidid>https://orcid.org/0000-0002-4136-3348</orcidid><orcidid>https://orcid.org/0000-0002-2452-383X</orcidid><orcidid>https://orcid.org/0000-0002-1177-519X</orcidid><orcidid>https://orcid.org/0000-0002-1748-3710</orcidid></search><sort><creationdate>201707</creationdate><title>Effects of whistler mode hiss waves in March 2013</title><author>Ripoll, J.‐F. ; Santolík, O. ; Reeves, G. D. ; Kurth, W. S. ; Denton, M. H. ; Loridan, V. ; Thaller, S. A. ; Kletzing, C. A. ; Turner, D. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-6f3b164c401527d2ec80948a873f4bbe3d7169d9f4d1b49daff13bf1c6f55603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Belt drives</topic><topic>Computer simulation</topic><topic>Diffusion coefficient</topic><topic>diffusion coefficients</topic><topic>electron lifetimes</topic><topic>Energy</topic><topic>energy structure</topic><topic>Hiss</topic><topic>MagEIS flux observations</topic><topic>Plasmasphere</topic><topic>Radiation</topic><topic>Radiation belt electrons</topic><topic>Radiation belts</topic><topic>Simulation</topic><topic>Transport</topic><topic>van Allen probes</topic><topic>wave particle interactions</topic><topic>whistler mode hiss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ripoll, J.‐F.</creatorcontrib><creatorcontrib>Santolík, O.</creatorcontrib><creatorcontrib>Reeves, G. D.</creatorcontrib><creatorcontrib>Kurth, W. S.</creatorcontrib><creatorcontrib>Denton, M. H.</creatorcontrib><creatorcontrib>Loridan, V.</creatorcontrib><creatorcontrib>Thaller, S. A.</creatorcontrib><creatorcontrib>Kletzing, C. A.</creatorcontrib><creatorcontrib>Turner, D. L.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ripoll, J.‐F.</au><au>Santolík, O.</au><au>Reeves, G. D.</au><au>Kurth, W. S.</au><au>Denton, M. H.</au><au>Loridan, V.</au><au>Thaller, S. A.</au><au>Kletzing, C. A.</au><au>Turner, D. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of whistler mode hiss waves in March 2013</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2017-07</date><risdate>2017</risdate><volume>122</volume><issue>7</issue><spage>7433</spage><epage>7462</epage><pages>7433-7462</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 h and 0.1 L shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L ~ 5 up to ~2 MeV at L ~ 2 and stop abruptly, similarly to the observed energy‐dependent inner belt edge. Periods when the plasmasphere extends beyond L ~ 5 favor long‐lasting hiss losses from the outer belt. Such loss rates are embedded in a reduced Fokker‐Planck code and validated against Magnetic Electron and Ion Spectrometer observations of the belts at all energy. Results are complemented with a sensitivity study involving different radial diffusion and lifetime models. Validation is carried out globally at all L shells and energies. The good agreement between simulations and observations demonstrates that hiss waves drive the slot formation during quiet times. Combined with transport, they sculpt the energy structure of the outer belt into an “S shape.” Low energy electrons (&lt;0.3 MeV) are less subject to hiss scattering below L = 4. In contrast, 0.3–1.5 MeV electrons evolve in an environment that depopulates them as they migrate from L ~ 5 to L ~ 2.5. Ultrarelativistic electrons are not affected by hiss losses until L ~ 2–3. Key Points Computations of daily pitch angle diffusion coefficients and electron lifetimes from properties of hiss waves observed in March 2013 Good agreement found between MagEIS flux observations and 1‐D Fokker‐Planck simulations based on our hiss loss term for quiet times Combined with transport, hiss waves loss drives the daily energy structure of the radiation belts, with a typical S‐shaped outer belt</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JA024139</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-5471-6202</orcidid><orcidid>https://orcid.org/0000-0002-2425-7818</orcidid><orcidid>https://orcid.org/0000-0002-7985-8098</orcidid><orcidid>https://orcid.org/0000-0002-4891-9273</orcidid><orcidid>https://orcid.org/0000-0003-3144-6542</orcidid><orcidid>https://orcid.org/0000-0002-4136-3348</orcidid><orcidid>https://orcid.org/0000-0002-2452-383X</orcidid><orcidid>https://orcid.org/0000-0002-1177-519X</orcidid><orcidid>https://orcid.org/0000-0002-1748-3710</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2017-07, Vol.122 (7), p.7433-7462
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_1928082300
source Wiley Online Library Free Content; Access via Wiley Online Library
subjects Accuracy
Belt drives
Computer simulation
Diffusion coefficient
diffusion coefficients
electron lifetimes
Energy
energy structure
Hiss
MagEIS flux observations
Plasmasphere
Radiation
Radiation belt electrons
Radiation belts
Simulation
Transport
van Allen probes
wave particle interactions
whistler mode hiss
title Effects of whistler mode hiss waves in March 2013
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20whistler%20mode%20hiss%20waves%20in%20March%202013&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Ripoll,%20J.%E2%80%90F.&rft.date=2017-07&rft.volume=122&rft.issue=7&rft.spage=7433&rft.epage=7462&rft.pages=7433-7462&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2017JA024139&rft_dat=%3Cproquest_cross%3E1928082300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928082300&rft_id=info:pmid/&rfr_iscdi=true