A decision tree using ID3 algorithm for English semantic analysis
Natural language processing has been studied for many years, and it has been applied to many researches and commercial applications. A new model is proposed in this paper, and is used in the English document-level emotional classification. In this survey, we proposed a new model by using an ID3 algo...
Gespeichert in:
Veröffentlicht in: | International journal of speech technology 2017-09, Vol.20 (3), p.593-613 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 613 |
---|---|
container_issue | 3 |
container_start_page | 593 |
container_title | International journal of speech technology |
container_volume | 20 |
creator | Phu, Vo Ngoc Tran, Vo Thi Ngoc Chau, Vo Thi Ngoc Dat, Nguyen Duy Duy, Khanh Ly Doan |
description | Natural language processing has been studied for many years, and it has been applied to many researches and commercial applications. A new model is proposed in this paper, and is used in the English document-level emotional classification. In this survey, we proposed a new model by using an ID3 algorithm of a decision tree to classify semantics (positive, negative, and neutral) for the English documents. The semantic classification of our model is based on many rules which are generated by applying the ID3 algorithm to 115,000 English sentences of our English training data set. We test our new model on the English testing data set including 25,000 English documents, and achieve 63.6% accuracy of sentiment classification results. |
doi_str_mv | 10.1007/s10772-017-9429-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927548892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927548892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-52a9ec57eab70ac2fb5405bb5b639d21bab364663cb657d2617528b0db80c0883</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczTJbr6OpVYtFLzoOSTZ7DZlu1szW2j_vSvrwYunGYbnfRkehO4ZfWSUqidgVClOKFPElNyQ0wWaMTFeNGP0ctwLzQgvmbxGNwA7SqlRhs_QYoGrGBKkvsNDjhEfIXUNXj8X2LVNn9Ow3eO6z3jVNW2CLYa4d92QAnada8-Q4BZd1a6FePc75-jzZfWxfCOb99f1crEhoWByIII7E4NQ0XlFXeC1FyUV3gsvC1Nx5p0vZCllEbwUquKSKcG1p5XXNFCtizl6mHoPuf86Rhjsrj_m8QmwzHAlSq0NHyk2USH3ADnW9pDT3uWzZdT-mLKTKTuasj-m7GnM8CkDI9s1Mf9p_jf0De36avk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927548892</pqid></control><display><type>article</type><title>A decision tree using ID3 algorithm for English semantic analysis</title><source>SpringerNature Complete Journals</source><creator>Phu, Vo Ngoc ; Tran, Vo Thi Ngoc ; Chau, Vo Thi Ngoc ; Dat, Nguyen Duy ; Duy, Khanh Ly Doan</creator><creatorcontrib>Phu, Vo Ngoc ; Tran, Vo Thi Ngoc ; Chau, Vo Thi Ngoc ; Dat, Nguyen Duy ; Duy, Khanh Ly Doan</creatorcontrib><description>Natural language processing has been studied for many years, and it has been applied to many researches and commercial applications. A new model is proposed in this paper, and is used in the English document-level emotional classification. In this survey, we proposed a new model by using an ID3 algorithm of a decision tree to classify semantics (positive, negative, and neutral) for the English documents. The semantic classification of our model is based on many rules which are generated by applying the ID3 algorithm to 115,000 English sentences of our English training data set. We test our new model on the English testing data set including 25,000 English documents, and achieve 63.6% accuracy of sentiment classification results.</description><identifier>ISSN: 1381-2416</identifier><identifier>EISSN: 1572-8110</identifier><identifier>DOI: 10.1007/s10772-017-9429-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Classification ; Decision analysis ; Decision trees ; Engineering ; English language ; Natural language processing ; Semantic analysis ; Semantics ; Sentences ; Sentiment analysis ; Signal,Image and Speech Processing ; Social Sciences</subject><ispartof>International journal of speech technology, 2017-09, Vol.20 (3), p.593-613</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-52a9ec57eab70ac2fb5405bb5b639d21bab364663cb657d2617528b0db80c0883</citedby><cites>FETCH-LOGICAL-c316t-52a9ec57eab70ac2fb5405bb5b639d21bab364663cb657d2617528b0db80c0883</cites><orcidid>0000-0001-6047-9066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10772-017-9429-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10772-017-9429-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Phu, Vo Ngoc</creatorcontrib><creatorcontrib>Tran, Vo Thi Ngoc</creatorcontrib><creatorcontrib>Chau, Vo Thi Ngoc</creatorcontrib><creatorcontrib>Dat, Nguyen Duy</creatorcontrib><creatorcontrib>Duy, Khanh Ly Doan</creatorcontrib><title>A decision tree using ID3 algorithm for English semantic analysis</title><title>International journal of speech technology</title><addtitle>Int J Speech Technol</addtitle><description>Natural language processing has been studied for many years, and it has been applied to many researches and commercial applications. A new model is proposed in this paper, and is used in the English document-level emotional classification. In this survey, we proposed a new model by using an ID3 algorithm of a decision tree to classify semantics (positive, negative, and neutral) for the English documents. The semantic classification of our model is based on many rules which are generated by applying the ID3 algorithm to 115,000 English sentences of our English training data set. We test our new model on the English testing data set including 25,000 English documents, and achieve 63.6% accuracy of sentiment classification results.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Engineering</subject><subject>English language</subject><subject>Natural language processing</subject><subject>Semantic analysis</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Sentiment analysis</subject><subject>Signal,Image and Speech Processing</subject><subject>Social Sciences</subject><issn>1381-2416</issn><issn>1572-8110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczTJbr6OpVYtFLzoOSTZ7DZlu1szW2j_vSvrwYunGYbnfRkehO4ZfWSUqidgVClOKFPElNyQ0wWaMTFeNGP0ctwLzQgvmbxGNwA7SqlRhs_QYoGrGBKkvsNDjhEfIXUNXj8X2LVNn9Ow3eO6z3jVNW2CLYa4d92QAnada8-Q4BZd1a6FePc75-jzZfWxfCOb99f1crEhoWByIII7E4NQ0XlFXeC1FyUV3gsvC1Nx5p0vZCllEbwUquKSKcG1p5XXNFCtizl6mHoPuf86Rhjsrj_m8QmwzHAlSq0NHyk2USH3ADnW9pDT3uWzZdT-mLKTKTuasj-m7GnM8CkDI9s1Mf9p_jf0De36avk</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Phu, Vo Ngoc</creator><creator>Tran, Vo Thi Ngoc</creator><creator>Chau, Vo Thi Ngoc</creator><creator>Dat, Nguyen Duy</creator><creator>Duy, Khanh Ly Doan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><orcidid>https://orcid.org/0000-0001-6047-9066</orcidid></search><sort><creationdate>20170901</creationdate><title>A decision tree using ID3 algorithm for English semantic analysis</title><author>Phu, Vo Ngoc ; Tran, Vo Thi Ngoc ; Chau, Vo Thi Ngoc ; Dat, Nguyen Duy ; Duy, Khanh Ly Doan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-52a9ec57eab70ac2fb5405bb5b639d21bab364663cb657d2617528b0db80c0883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Engineering</topic><topic>English language</topic><topic>Natural language processing</topic><topic>Semantic analysis</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Sentiment analysis</topic><topic>Signal,Image and Speech Processing</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phu, Vo Ngoc</creatorcontrib><creatorcontrib>Tran, Vo Thi Ngoc</creatorcontrib><creatorcontrib>Chau, Vo Thi Ngoc</creatorcontrib><creatorcontrib>Dat, Nguyen Duy</creatorcontrib><creatorcontrib>Duy, Khanh Ly Doan</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>International journal of speech technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phu, Vo Ngoc</au><au>Tran, Vo Thi Ngoc</au><au>Chau, Vo Thi Ngoc</au><au>Dat, Nguyen Duy</au><au>Duy, Khanh Ly Doan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A decision tree using ID3 algorithm for English semantic analysis</atitle><jtitle>International journal of speech technology</jtitle><stitle>Int J Speech Technol</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>20</volume><issue>3</issue><spage>593</spage><epage>613</epage><pages>593-613</pages><issn>1381-2416</issn><eissn>1572-8110</eissn><abstract>Natural language processing has been studied for many years, and it has been applied to many researches and commercial applications. A new model is proposed in this paper, and is used in the English document-level emotional classification. In this survey, we proposed a new model by using an ID3 algorithm of a decision tree to classify semantics (positive, negative, and neutral) for the English documents. The semantic classification of our model is based on many rules which are generated by applying the ID3 algorithm to 115,000 English sentences of our English training data set. We test our new model on the English testing data set including 25,000 English documents, and achieve 63.6% accuracy of sentiment classification results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10772-017-9429-x</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-6047-9066</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1381-2416 |
ispartof | International journal of speech technology, 2017-09, Vol.20 (3), p.593-613 |
issn | 1381-2416 1572-8110 |
language | eng |
recordid | cdi_proquest_journals_1927548892 |
source | SpringerNature Complete Journals |
subjects | Algorithms Artificial Intelligence Classification Decision analysis Decision trees Engineering English language Natural language processing Semantic analysis Semantics Sentences Sentiment analysis Signal,Image and Speech Processing Social Sciences |
title | A decision tree using ID3 algorithm for English semantic analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20decision%20tree%20using%20ID3%20algorithm%20for%20English%20semantic%20analysis&rft.jtitle=International%20journal%20of%20speech%20technology&rft.au=Phu,%20Vo%20Ngoc&rft.date=2017-09-01&rft.volume=20&rft.issue=3&rft.spage=593&rft.epage=613&rft.pages=593-613&rft.issn=1381-2416&rft.eissn=1572-8110&rft_id=info:doi/10.1007/s10772-017-9429-x&rft_dat=%3Cproquest_cross%3E1927548892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927548892&rft_id=info:pmid/&rfr_iscdi=true |