Emission sources and mitigation of fluorinated Non‐CO2 greenhouse gas in registered CDM projects

Typical non‐CO2 greenhouse gases in clean development mechanism (CDM) projects include methane (CH4), nitrous oxide (N2O), and fluorinated gases (F‐gases). The use of F‐gases, such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), has increased sharply in the semi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Greenhouse gases: science and technology 2017-08, Vol.7 (4), p.589-601
Hauptverfasser: Lee, Seung‐Jae, Ryu, In‐Soo, Jeon, Sang‐Goo, Moon, Seung‐Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 601
container_issue 4
container_start_page 589
container_title Greenhouse gases: science and technology
container_volume 7
creator Lee, Seung‐Jae
Ryu, In‐Soo
Jeon, Sang‐Goo
Moon, Seung‐Hyun
description Typical non‐CO2 greenhouse gases in clean development mechanism (CDM) projects include methane (CH4), nitrous oxide (N2O), and fluorinated gases (F‐gases). The use of F‐gases, such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), has increased sharply in the semiconductor and electronics manufacturing industries. The global warming potential of F‐gases is very high, ranging from 140 to 23 900. Therefore, there has been considerable interest in the reduction of F‐gas emissions. This paper examines the emission sources, methodology, and reduction technologies of F‐gases, using the project design documents of CDM projects registered in the United Nations Framework Convention on Climate Change (UNFCCC). In comparison to other non‐CO2 gases, CDM projects have significantly reduced annual F‐gas emissions. CDM projects achieved reductions of HFCs using thermal oxidation technology, mostly involving the chlorodifluoromethane (HCFC‐22) production process; conversely, PFC reductions targeted the aluminum smelting process to reduce the anode effect. The extent of SF6 reduction in CDM projects was relatively high in the liquid crystal display (LCD) manufacturing process using thermal and catalytic oxidation, although SF6 recovery technology was much more effective in terms of capital and annual costs. Overall, large amounts of F‐gases could be alleviated using thermal or catalytic oxidation. However, the economical reduction of F‐gas emissions would be possible using recovery technology. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd.
doi_str_mv 10.1002/ghg.1680
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1927382769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927382769</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2800-c86a610281e5d4e5cd607da9a69aab4ad8e653b38ec8450506186b94859441ab3</originalsourceid><addsrcrecordid>eNpNkEFOwzAQRS0EElWpxBEssU6xHdtxliiUFKnQDawtJ5m6rtq42IlQdxyBM3ISEpUFs5mv0dN8_Y_QLSVzSgi7t1s7p1KRCzRhVLAkVZm6_Kev0SzGHRmGE5aRbIKqxcHF6HyLo-9DDRGbtsEH1zlruvHsN3iz731wremgwa--_fn6LtYM2wDQbn0fAVsTsWtxAOtiB2HAiscXfAx-B3UXb9DVxuwjzP72FL0_Ld6KZbJal8_FwyqxTBGS1EoaSQlTFETDQdSNJFljciNzYypuGgVSpFWqoFZcEEEkVbLKuRI559RU6RTdnf8Oxh89xE7vhkjtYKlpzrJUsUzmAzU_U59uDyd9DO5gwklToscG9dCgHhvU5bJMR5H-AmxcZbk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927382769</pqid></control><display><type>article</type><title>Emission sources and mitigation of fluorinated Non‐CO2 greenhouse gas in registered CDM projects</title><source>Wiley Online Library</source><creator>Lee, Seung‐Jae ; Ryu, In‐Soo ; Jeon, Sang‐Goo ; Moon, Seung‐Hyun</creator><creatorcontrib>Lee, Seung‐Jae ; Ryu, In‐Soo ; Jeon, Sang‐Goo ; Moon, Seung‐Hyun</creatorcontrib><description>Typical non‐CO2 greenhouse gases in clean development mechanism (CDM) projects include methane (CH4), nitrous oxide (N2O), and fluorinated gases (F‐gases). The use of F‐gases, such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), has increased sharply in the semiconductor and electronics manufacturing industries. The global warming potential of F‐gases is very high, ranging from 140 to 23 900. Therefore, there has been considerable interest in the reduction of F‐gas emissions. This paper examines the emission sources, methodology, and reduction technologies of F‐gases, using the project design documents of CDM projects registered in the United Nations Framework Convention on Climate Change (UNFCCC). In comparison to other non‐CO2 gases, CDM projects have significantly reduced annual F‐gas emissions. CDM projects achieved reductions of HFCs using thermal oxidation technology, mostly involving the chlorodifluoromethane (HCFC‐22) production process; conversely, PFC reductions targeted the aluminum smelting process to reduce the anode effect. The extent of SF6 reduction in CDM projects was relatively high in the liquid crystal display (LCD) manufacturing process using thermal and catalytic oxidation, although SF6 recovery technology was much more effective in terms of capital and annual costs. Overall, large amounts of F‐gases could be alleviated using thermal or catalytic oxidation. However, the economical reduction of F‐gas emissions would be possible using recovery technology. © 2017 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 2152-3878</identifier><identifier>EISSN: 2152-3878</identifier><identifier>DOI: 10.1002/ghg.1680</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Air pollution ; Aluminum ; Anode effect ; Carbon dioxide ; Catalysis ; Catalytic oxidation ; Chlorodifluoromethane ; Clean Development Mechanism ; Climate change ; Economic conditions ; emission ; Emissions ; Emissions control ; Fluorination ; F‐gas ; Gases ; Global warming ; Greenhouse effect ; Greenhouse gases ; Hydrochlorofluorocarbons ; Hydrofluorocarbons ; Liquid crystal displays ; Manufacturing ; Methane ; Mitigation ; Nitrous oxide ; non‐CO2 ; Oxidation ; Perfluorocarbons ; Recovery ; Smelting ; Sulfur ; Sulfur hexafluoride ; Technology utilization</subject><ispartof>Greenhouse gases: science and technology, 2017-08, Vol.7 (4), p.589-601</ispartof><rights>2017 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2017 Society of Chemical Industry and John Wiley &amp; Sons, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fghg.1680$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fghg.1680$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lee, Seung‐Jae</creatorcontrib><creatorcontrib>Ryu, In‐Soo</creatorcontrib><creatorcontrib>Jeon, Sang‐Goo</creatorcontrib><creatorcontrib>Moon, Seung‐Hyun</creatorcontrib><title>Emission sources and mitigation of fluorinated Non‐CO2 greenhouse gas in registered CDM projects</title><title>Greenhouse gases: science and technology</title><description>Typical non‐CO2 greenhouse gases in clean development mechanism (CDM) projects include methane (CH4), nitrous oxide (N2O), and fluorinated gases (F‐gases). The use of F‐gases, such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), has increased sharply in the semiconductor and electronics manufacturing industries. The global warming potential of F‐gases is very high, ranging from 140 to 23 900. Therefore, there has been considerable interest in the reduction of F‐gas emissions. This paper examines the emission sources, methodology, and reduction technologies of F‐gases, using the project design documents of CDM projects registered in the United Nations Framework Convention on Climate Change (UNFCCC). In comparison to other non‐CO2 gases, CDM projects have significantly reduced annual F‐gas emissions. CDM projects achieved reductions of HFCs using thermal oxidation technology, mostly involving the chlorodifluoromethane (HCFC‐22) production process; conversely, PFC reductions targeted the aluminum smelting process to reduce the anode effect. The extent of SF6 reduction in CDM projects was relatively high in the liquid crystal display (LCD) manufacturing process using thermal and catalytic oxidation, although SF6 recovery technology was much more effective in terms of capital and annual costs. Overall, large amounts of F‐gases could be alleviated using thermal or catalytic oxidation. However, the economical reduction of F‐gas emissions would be possible using recovery technology. © 2017 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</description><subject>Air pollution</subject><subject>Aluminum</subject><subject>Anode effect</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalytic oxidation</subject><subject>Chlorodifluoromethane</subject><subject>Clean Development Mechanism</subject><subject>Climate change</subject><subject>Economic conditions</subject><subject>emission</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Fluorination</subject><subject>F‐gas</subject><subject>Gases</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Hydrochlorofluorocarbons</subject><subject>Hydrofluorocarbons</subject><subject>Liquid crystal displays</subject><subject>Manufacturing</subject><subject>Methane</subject><subject>Mitigation</subject><subject>Nitrous oxide</subject><subject>non‐CO2</subject><subject>Oxidation</subject><subject>Perfluorocarbons</subject><subject>Recovery</subject><subject>Smelting</subject><subject>Sulfur</subject><subject>Sulfur hexafluoride</subject><subject>Technology utilization</subject><issn>2152-3878</issn><issn>2152-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkEFOwzAQRS0EElWpxBEssU6xHdtxliiUFKnQDawtJ5m6rtq42IlQdxyBM3ISEpUFs5mv0dN8_Y_QLSVzSgi7t1s7p1KRCzRhVLAkVZm6_Kev0SzGHRmGE5aRbIKqxcHF6HyLo-9DDRGbtsEH1zlruvHsN3iz731wremgwa--_fn6LtYM2wDQbn0fAVsTsWtxAOtiB2HAiscXfAx-B3UXb9DVxuwjzP72FL0_Ld6KZbJal8_FwyqxTBGS1EoaSQlTFETDQdSNJFljciNzYypuGgVSpFWqoFZcEEEkVbLKuRI559RU6RTdnf8Oxh89xE7vhkjtYKlpzrJUsUzmAzU_U59uDyd9DO5gwklToscG9dCgHhvU5bJMR5H-AmxcZbk</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Lee, Seung‐Jae</creator><creator>Ryu, In‐Soo</creator><creator>Jeon, Sang‐Goo</creator><creator>Moon, Seung‐Hyun</creator><general>Wiley Subscription Services, Inc</general><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>201708</creationdate><title>Emission sources and mitigation of fluorinated Non‐CO2 greenhouse gas in registered CDM projects</title><author>Lee, Seung‐Jae ; Ryu, In‐Soo ; Jeon, Sang‐Goo ; Moon, Seung‐Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2800-c86a610281e5d4e5cd607da9a69aab4ad8e653b38ec8450506186b94859441ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air pollution</topic><topic>Aluminum</topic><topic>Anode effect</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalytic oxidation</topic><topic>Chlorodifluoromethane</topic><topic>Clean Development Mechanism</topic><topic>Climate change</topic><topic>Economic conditions</topic><topic>emission</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Fluorination</topic><topic>F‐gas</topic><topic>Gases</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Hydrochlorofluorocarbons</topic><topic>Hydrofluorocarbons</topic><topic>Liquid crystal displays</topic><topic>Manufacturing</topic><topic>Methane</topic><topic>Mitigation</topic><topic>Nitrous oxide</topic><topic>non‐CO2</topic><topic>Oxidation</topic><topic>Perfluorocarbons</topic><topic>Recovery</topic><topic>Smelting</topic><topic>Sulfur</topic><topic>Sulfur hexafluoride</topic><topic>Technology utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seung‐Jae</creatorcontrib><creatorcontrib>Ryu, In‐Soo</creatorcontrib><creatorcontrib>Jeon, Sang‐Goo</creatorcontrib><creatorcontrib>Moon, Seung‐Hyun</creatorcontrib><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Greenhouse gases: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seung‐Jae</au><au>Ryu, In‐Soo</au><au>Jeon, Sang‐Goo</au><au>Moon, Seung‐Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emission sources and mitigation of fluorinated Non‐CO2 greenhouse gas in registered CDM projects</atitle><jtitle>Greenhouse gases: science and technology</jtitle><date>2017-08</date><risdate>2017</risdate><volume>7</volume><issue>4</issue><spage>589</spage><epage>601</epage><pages>589-601</pages><issn>2152-3878</issn><eissn>2152-3878</eissn><abstract>Typical non‐CO2 greenhouse gases in clean development mechanism (CDM) projects include methane (CH4), nitrous oxide (N2O), and fluorinated gases (F‐gases). The use of F‐gases, such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), has increased sharply in the semiconductor and electronics manufacturing industries. The global warming potential of F‐gases is very high, ranging from 140 to 23 900. Therefore, there has been considerable interest in the reduction of F‐gas emissions. This paper examines the emission sources, methodology, and reduction technologies of F‐gases, using the project design documents of CDM projects registered in the United Nations Framework Convention on Climate Change (UNFCCC). In comparison to other non‐CO2 gases, CDM projects have significantly reduced annual F‐gas emissions. CDM projects achieved reductions of HFCs using thermal oxidation technology, mostly involving the chlorodifluoromethane (HCFC‐22) production process; conversely, PFC reductions targeted the aluminum smelting process to reduce the anode effect. The extent of SF6 reduction in CDM projects was relatively high in the liquid crystal display (LCD) manufacturing process using thermal and catalytic oxidation, although SF6 recovery technology was much more effective in terms of capital and annual costs. Overall, large amounts of F‐gases could be alleviated using thermal or catalytic oxidation. However, the economical reduction of F‐gas emissions would be possible using recovery technology. © 2017 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ghg.1680</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2152-3878
ispartof Greenhouse gases: science and technology, 2017-08, Vol.7 (4), p.589-601
issn 2152-3878
2152-3878
language eng
recordid cdi_proquest_journals_1927382769
source Wiley Online Library
subjects Air pollution
Aluminum
Anode effect
Carbon dioxide
Catalysis
Catalytic oxidation
Chlorodifluoromethane
Clean Development Mechanism
Climate change
Economic conditions
emission
Emissions
Emissions control
Fluorination
F‐gas
Gases
Global warming
Greenhouse effect
Greenhouse gases
Hydrochlorofluorocarbons
Hydrofluorocarbons
Liquid crystal displays
Manufacturing
Methane
Mitigation
Nitrous oxide
non‐CO2
Oxidation
Perfluorocarbons
Recovery
Smelting
Sulfur
Sulfur hexafluoride
Technology utilization
title Emission sources and mitigation of fluorinated Non‐CO2 greenhouse gas in registered CDM projects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emission%20sources%20and%20mitigation%20of%20fluorinated%20Non%E2%80%90CO2%20greenhouse%20gas%20in%20registered%20CDM%20projects&rft.jtitle=Greenhouse%20gases:%20science%20and%20technology&rft.au=Lee,%20Seung%E2%80%90Jae&rft.date=2017-08&rft.volume=7&rft.issue=4&rft.spage=589&rft.epage=601&rft.pages=589-601&rft.issn=2152-3878&rft.eissn=2152-3878&rft_id=info:doi/10.1002/ghg.1680&rft_dat=%3Cproquest_wiley%3E1927382769%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927382769&rft_id=info:pmid/&rfr_iscdi=true