Self‐Assembled Dendritic Pt Nanostructure with High‐Index Facets as Highly Active and Durable Electrocatalyst for Oxygen Reduction

The durability issues of Pt catalyst should be resolved for the commercialization of proton exchange membrane fuel cells. Nanocrystal structures with high‐index facets have been recently explored to solve the critical durability problem of fuel cell catalysts as Pt catalysts with high‐index facets c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2017-08, Vol.10 (15), p.3063-3068
Hauptverfasser: Jang, Youngjin, Choi, Kwang‐Hyun, Chung, Dong Young, Lee, Ji Eun, Jung, Namgee, Sung, Yung‐Eun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3068
container_issue 15
container_start_page 3063
container_title ChemSusChem
container_volume 10
creator Jang, Youngjin
Choi, Kwang‐Hyun
Chung, Dong Young
Lee, Ji Eun
Jung, Namgee
Sung, Yung‐Eun
description The durability issues of Pt catalyst should be resolved for the commercialization of proton exchange membrane fuel cells. Nanocrystal structures with high‐index facets have been recently explored to solve the critical durability problem of fuel cell catalysts as Pt catalysts with high‐index facets can preserve the ordered surfaces without change of the original structures. However, it is very difficult to develop effective and practical synthetic methods for Pt‐based nanostructures with high‐index facets. The current study describes a simple one‐pot synthesis of self‐assembled dendritic Pt nanostructures with electrochemically active and stable high‐index facets. Pt nanodendrites exhibited 2 times higher ORR activity and superior durability (only 3.0 % activity loss after 10 000 potential cycles) than a commercial Pt/C. The enhanced catalytic performance was elucidated by the formation of well‐organized dendritic structures with plenty of reactive interfaces among 5 nm‐sized Pt particles and the coexistence of low‐ and high‐index facets on the particles. Special facets: We propose a facile synthesis of highly active and durable Pt nanodendrites for the oxygen reduction reaction and systematically study the formation mechanism of the dendritic nanostructure. The enhanced activity and durability are attributed to the formation of well‐organized dendritic structures with plenty of reactive interfaces among small Pt nanoparticles and the coexistence of low‐ and high‐index surfaces.
doi_str_mv 10.1002/cssc.201700852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927369323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927369323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-790778d9a329d0797899dafb25c1854b4a33263aa941a81df0c3d699a813b4783</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EoqWwMiJLzC3-Sex4rEqBShVFFCS2yLEdSJUmxXaAbEzMPCNPgqFQRqZ7dXW-c6UPgEOMBhghcqKcUwOCMEcoickW6OKERf2YRXfbm53iDthzboEQQ4KxXdAhCYs5QVEXvM1NmX-8vg-dM8usNBqemkrbwhcKXnl4Kavaedso31gDnwv_AC-K-4cQmFTavMAzqYx3ULrvc9nCofLFk4GyCqLGymCE49Iob2slvSxb52FeWzh7ae9NBa-NDuqirvbBTi5LZw5-Zg_cno1vRhf96ex8MhpO-yrCiPS5QJwnWkhKhEZc8EQILfOMxAoncZRFklLCqJQiwjLBOkeKaiZE2GkW8YT2wPHau7L1Y2OcTxd1Y6vwMsWCcMoEJTRQgzWlbO2cNXm6ssVS2jbFKP2qPf2qPd3UHgJHP9omWxq9wX97DoBYA89Fadp_dOloPh_9yT8BflqRjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927369323</pqid></control><display><type>article</type><title>Self‐Assembled Dendritic Pt Nanostructure with High‐Index Facets as Highly Active and Durable Electrocatalyst for Oxygen Reduction</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jang, Youngjin ; Choi, Kwang‐Hyun ; Chung, Dong Young ; Lee, Ji Eun ; Jung, Namgee ; Sung, Yung‐Eun</creator><creatorcontrib>Jang, Youngjin ; Choi, Kwang‐Hyun ; Chung, Dong Young ; Lee, Ji Eun ; Jung, Namgee ; Sung, Yung‐Eun</creatorcontrib><description>The durability issues of Pt catalyst should be resolved for the commercialization of proton exchange membrane fuel cells. Nanocrystal structures with high‐index facets have been recently explored to solve the critical durability problem of fuel cell catalysts as Pt catalysts with high‐index facets can preserve the ordered surfaces without change of the original structures. However, it is very difficult to develop effective and practical synthetic methods for Pt‐based nanostructures with high‐index facets. The current study describes a simple one‐pot synthesis of self‐assembled dendritic Pt nanostructures with electrochemically active and stable high‐index facets. Pt nanodendrites exhibited 2 times higher ORR activity and superior durability (only 3.0 % activity loss after 10 000 potential cycles) than a commercial Pt/C. The enhanced catalytic performance was elucidated by the formation of well‐organized dendritic structures with plenty of reactive interfaces among 5 nm‐sized Pt particles and the coexistence of low‐ and high‐index facets on the particles. Special facets: We propose a facile synthesis of highly active and durable Pt nanodendrites for the oxygen reduction reaction and systematically study the formation mechanism of the dendritic nanostructure. The enhanced activity and durability are attributed to the formation of well‐organized dendritic structures with plenty of reactive interfaces among small Pt nanoparticles and the coexistence of low‐ and high‐index surfaces.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201700852</identifier><identifier>PMID: 28657204</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Commercialization ; Dendrimers - chemistry ; Dendritic structure ; Durability ; electrocatalysis ; Electrochemistry ; high-index facet ; Models, Molecular ; Molecular Conformation ; Nanocrystals ; nanodendrites ; Nanostructure ; Nanostructures - chemistry ; Oxidation-Reduction ; Oxygen - chemistry ; oxygen reduction reaction ; Particle physics ; platinum ; Platinum - chemistry ; Product development ; Proton exchange membrane fuel cells ; Surface chemistry</subject><ispartof>ChemSusChem, 2017-08, Vol.10 (15), p.3063-3068</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-790778d9a329d0797899dafb25c1854b4a33263aa941a81df0c3d699a813b4783</citedby><cites>FETCH-LOGICAL-c4102-790778d9a329d0797899dafb25c1854b4a33263aa941a81df0c3d699a813b4783</cites><orcidid>0000-0001-7057-1464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201700852$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201700852$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28657204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Youngjin</creatorcontrib><creatorcontrib>Choi, Kwang‐Hyun</creatorcontrib><creatorcontrib>Chung, Dong Young</creatorcontrib><creatorcontrib>Lee, Ji Eun</creatorcontrib><creatorcontrib>Jung, Namgee</creatorcontrib><creatorcontrib>Sung, Yung‐Eun</creatorcontrib><title>Self‐Assembled Dendritic Pt Nanostructure with High‐Index Facets as Highly Active and Durable Electrocatalyst for Oxygen Reduction</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>The durability issues of Pt catalyst should be resolved for the commercialization of proton exchange membrane fuel cells. Nanocrystal structures with high‐index facets have been recently explored to solve the critical durability problem of fuel cell catalysts as Pt catalysts with high‐index facets can preserve the ordered surfaces without change of the original structures. However, it is very difficult to develop effective and practical synthetic methods for Pt‐based nanostructures with high‐index facets. The current study describes a simple one‐pot synthesis of self‐assembled dendritic Pt nanostructures with electrochemically active and stable high‐index facets. Pt nanodendrites exhibited 2 times higher ORR activity and superior durability (only 3.0 % activity loss after 10 000 potential cycles) than a commercial Pt/C. The enhanced catalytic performance was elucidated by the formation of well‐organized dendritic structures with plenty of reactive interfaces among 5 nm‐sized Pt particles and the coexistence of low‐ and high‐index facets on the particles. Special facets: We propose a facile synthesis of highly active and durable Pt nanodendrites for the oxygen reduction reaction and systematically study the formation mechanism of the dendritic nanostructure. The enhanced activity and durability are attributed to the formation of well‐organized dendritic structures with plenty of reactive interfaces among small Pt nanoparticles and the coexistence of low‐ and high‐index surfaces.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Commercialization</subject><subject>Dendrimers - chemistry</subject><subject>Dendritic structure</subject><subject>Durability</subject><subject>electrocatalysis</subject><subject>Electrochemistry</subject><subject>high-index facet</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nanocrystals</subject><subject>nanodendrites</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - chemistry</subject><subject>oxygen reduction reaction</subject><subject>Particle physics</subject><subject>platinum</subject><subject>Platinum - chemistry</subject><subject>Product development</subject><subject>Proton exchange membrane fuel cells</subject><subject>Surface chemistry</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1OwzAURi0EoqWwMiJLzC3-Sex4rEqBShVFFCS2yLEdSJUmxXaAbEzMPCNPgqFQRqZ7dXW-c6UPgEOMBhghcqKcUwOCMEcoickW6OKERf2YRXfbm53iDthzboEQQ4KxXdAhCYs5QVEXvM1NmX-8vg-dM8usNBqemkrbwhcKXnl4Kavaedso31gDnwv_AC-K-4cQmFTavMAzqYx3ULrvc9nCofLFk4GyCqLGymCE49Iob2slvSxb52FeWzh7ae9NBa-NDuqirvbBTi5LZw5-Zg_cno1vRhf96ex8MhpO-yrCiPS5QJwnWkhKhEZc8EQILfOMxAoncZRFklLCqJQiwjLBOkeKaiZE2GkW8YT2wPHau7L1Y2OcTxd1Y6vwMsWCcMoEJTRQgzWlbO2cNXm6ssVS2jbFKP2qPf2qPd3UHgJHP9omWxq9wX97DoBYA89Fadp_dOloPh_9yT8BflqRjQ</recordid><startdate>20170810</startdate><enddate>20170810</enddate><creator>Jang, Youngjin</creator><creator>Choi, Kwang‐Hyun</creator><creator>Chung, Dong Young</creator><creator>Lee, Ji Eun</creator><creator>Jung, Namgee</creator><creator>Sung, Yung‐Eun</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-7057-1464</orcidid></search><sort><creationdate>20170810</creationdate><title>Self‐Assembled Dendritic Pt Nanostructure with High‐Index Facets as Highly Active and Durable Electrocatalyst for Oxygen Reduction</title><author>Jang, Youngjin ; Choi, Kwang‐Hyun ; Chung, Dong Young ; Lee, Ji Eun ; Jung, Namgee ; Sung, Yung‐Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-790778d9a329d0797899dafb25c1854b4a33263aa941a81df0c3d699a813b4783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Commercialization</topic><topic>Dendrimers - chemistry</topic><topic>Dendritic structure</topic><topic>Durability</topic><topic>electrocatalysis</topic><topic>Electrochemistry</topic><topic>high-index facet</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nanocrystals</topic><topic>nanodendrites</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - chemistry</topic><topic>oxygen reduction reaction</topic><topic>Particle physics</topic><topic>platinum</topic><topic>Platinum - chemistry</topic><topic>Product development</topic><topic>Proton exchange membrane fuel cells</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Youngjin</creatorcontrib><creatorcontrib>Choi, Kwang‐Hyun</creatorcontrib><creatorcontrib>Chung, Dong Young</creatorcontrib><creatorcontrib>Lee, Ji Eun</creatorcontrib><creatorcontrib>Jung, Namgee</creatorcontrib><creatorcontrib>Sung, Yung‐Eun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Youngjin</au><au>Choi, Kwang‐Hyun</au><au>Chung, Dong Young</au><au>Lee, Ji Eun</au><au>Jung, Namgee</au><au>Sung, Yung‐Eun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Assembled Dendritic Pt Nanostructure with High‐Index Facets as Highly Active and Durable Electrocatalyst for Oxygen Reduction</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2017-08-10</date><risdate>2017</risdate><volume>10</volume><issue>15</issue><spage>3063</spage><epage>3068</epage><pages>3063-3068</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>The durability issues of Pt catalyst should be resolved for the commercialization of proton exchange membrane fuel cells. Nanocrystal structures with high‐index facets have been recently explored to solve the critical durability problem of fuel cell catalysts as Pt catalysts with high‐index facets can preserve the ordered surfaces without change of the original structures. However, it is very difficult to develop effective and practical synthetic methods for Pt‐based nanostructures with high‐index facets. The current study describes a simple one‐pot synthesis of self‐assembled dendritic Pt nanostructures with electrochemically active and stable high‐index facets. Pt nanodendrites exhibited 2 times higher ORR activity and superior durability (only 3.0 % activity loss after 10 000 potential cycles) than a commercial Pt/C. The enhanced catalytic performance was elucidated by the formation of well‐organized dendritic structures with plenty of reactive interfaces among 5 nm‐sized Pt particles and the coexistence of low‐ and high‐index facets on the particles. Special facets: We propose a facile synthesis of highly active and durable Pt nanodendrites for the oxygen reduction reaction and systematically study the formation mechanism of the dendritic nanostructure. The enhanced activity and durability are attributed to the formation of well‐organized dendritic structures with plenty of reactive interfaces among small Pt nanoparticles and the coexistence of low‐ and high‐index surfaces.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28657204</pmid><doi>10.1002/cssc.201700852</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7057-1464</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2017-08, Vol.10 (15), p.3063-3068
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_journals_1927369323
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Catalysis
Catalysts
Commercialization
Dendrimers - chemistry
Dendritic structure
Durability
electrocatalysis
Electrochemistry
high-index facet
Models, Molecular
Molecular Conformation
Nanocrystals
nanodendrites
Nanostructure
Nanostructures - chemistry
Oxidation-Reduction
Oxygen - chemistry
oxygen reduction reaction
Particle physics
platinum
Platinum - chemistry
Product development
Proton exchange membrane fuel cells
Surface chemistry
title Self‐Assembled Dendritic Pt Nanostructure with High‐Index Facets as Highly Active and Durable Electrocatalyst for Oxygen Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Assembled%20Dendritic%20Pt%20Nanostructure%20with%20High%E2%80%90Index%20Facets%20as%20Highly%20Active%20and%20Durable%20Electrocatalyst%20for%20Oxygen%20Reduction&rft.jtitle=ChemSusChem&rft.au=Jang,%20Youngjin&rft.date=2017-08-10&rft.volume=10&rft.issue=15&rft.spage=3063&rft.epage=3068&rft.pages=3063-3068&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201700852&rft_dat=%3Cproquest_cross%3E1927369323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927369323&rft_id=info:pmid/28657204&rfr_iscdi=true