Hierarchy-Cutting Model Based Association Semantic for Analyzing Domain Topic on the Web

Association link network (ALN) can organize massive Web information to provide many intelligent services in our big data society. Effective semantic layered technologies not only can provide theoretical support for knowledge discovery in Web resources, but also can improve the searching efficiency o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2017-08, Vol.13 (4), p.1941-1950
Hauptverfasser: Xu, Zheng, Zhang, Shunxiang, Raymond Choo, Kim-Kwang, Mei, Lin, Wei, Xiao, Luo, Xiangfeng, Hu, Chuanping, Liu, Yunhuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1950
container_issue 4
container_start_page 1941
container_title IEEE transactions on industrial informatics
container_volume 13
creator Xu, Zheng
Zhang, Shunxiang
Raymond Choo, Kim-Kwang
Mei, Lin
Wei, Xiao
Luo, Xiangfeng
Hu, Chuanping
Liu, Yunhuai
description Association link network (ALN) can organize massive Web information to provide many intelligent services in our big data society. Effective semantic layered technologies not only can provide theoretical support for knowledge discovery in Web resources, but also can improve the searching efficiency of related information systems such as Web information system and industrial information system. How to realize the layer division of association semantic by the hierarchy analysis of ALN is an important research topic. To solve this problem, this paper proposes a hierarchy-cutting model of association semantic. First, experiments of four types of keywords with different linking roles are conducted to discover the possible distribution law. Experimental results show that these keywords with association role reveal previous power-law distribution. Then, based on the discovered power-law distribution, up-cutting and down-cutting points are presented to divide the association semantic into three layers. At the same time, theories of the hierarchy-cutting model are presented. Finally, examples of current core topic and permanent topics belonging to a domain are given. The experiments show that hierarchy-cutting points have high accuracy. The multilayer theory of association semantic can provide a theoretical support for knowledge recommendation with different particle sizes on ALNs.
doi_str_mv 10.1109/TII.2017.2647986
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1927319421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7811202</ieee_id><sourcerecordid>1927319421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-53cc17b917fb263d8e54214e5f50a89faf53d7af21c1e3c4d2e2a30f6ae89ffe3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYreTbw08bzYabd094j4AQnGgxi9NaU7lRLYYrsc8NdbAvE0k7zPO5k8hNwA6wOw-n42mfQ5A9Xng1LV1eCEXEBdQsGYZKd5lxIKwZk4J5cpLRkTion6gnyNPUYT7WJXjLZd59tv-hoaXNEHk7Chw5SC9abzoaXvuDZt5y11IdJha1a73z3-GNbGt3QWNjnKWLdA-onzK3LmzCrh9XH2yMfz02w0LqZvL5PRcFpYXkNXSGEtqHkNys35QDQVypJDidJJZqraGSdFo4zjYAGFLRuO3AjmBgZz6lD0yN3h7iaGny2mTi_DNubvkoaaK5ElcMgUO1A2hpQiOr2Jfm3iTgPTe386-9N7f_roL1duDxWPiP-4qgA44-IP5flryw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927319421</pqid></control><display><type>article</type><title>Hierarchy-Cutting Model Based Association Semantic for Analyzing Domain Topic on the Web</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Zheng ; Zhang, Shunxiang ; Raymond Choo, Kim-Kwang ; Mei, Lin ; Wei, Xiao ; Luo, Xiangfeng ; Hu, Chuanping ; Liu, Yunhuai</creator><creatorcontrib>Xu, Zheng ; Zhang, Shunxiang ; Raymond Choo, Kim-Kwang ; Mei, Lin ; Wei, Xiao ; Luo, Xiangfeng ; Hu, Chuanping ; Liu, Yunhuai</creatorcontrib><description>Association link network (ALN) can organize massive Web information to provide many intelligent services in our big data society. Effective semantic layered technologies not only can provide theoretical support for knowledge discovery in Web resources, but also can improve the searching efficiency of related information systems such as Web information system and industrial information system. How to realize the layer division of association semantic by the hierarchy analysis of ALN is an important research topic. To solve this problem, this paper proposes a hierarchy-cutting model of association semantic. First, experiments of four types of keywords with different linking roles are conducted to discover the possible distribution law. Experimental results show that these keywords with association role reveal previous power-law distribution. Then, based on the discovered power-law distribution, up-cutting and down-cutting points are presented to divide the association semantic into three layers. At the same time, theories of the hierarchy-cutting model are presented. Finally, examples of current core topic and permanent topics belonging to a domain are given. The experiments show that hierarchy-cutting points have high accuracy. The multilayer theory of association semantic can provide a theoretical support for knowledge recommendation with different particle sizes on ALNs.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2017.2647986</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Association link network (ALN) ; Big data ; Computational modeling ; Cutting ; Data management ; Data mining ; Division ; domain topic ; Feature extraction ; hierarchy-cutting model ; Informatics ; Information dissemination ; Information systems ; Internet resources ; Knowledge engineering ; power-law distribution ; Semantics</subject><ispartof>IEEE transactions on industrial informatics, 2017-08, Vol.13 (4), p.1941-1950</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-53cc17b917fb263d8e54214e5f50a89faf53d7af21c1e3c4d2e2a30f6ae89ffe3</citedby><cites>FETCH-LOGICAL-c291t-53cc17b917fb263d8e54214e5f50a89faf53d7af21c1e3c4d2e2a30f6ae89ffe3</cites><orcidid>0000-0002-0540-7593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7811202$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7811202$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Zheng</creatorcontrib><creatorcontrib>Zhang, Shunxiang</creatorcontrib><creatorcontrib>Raymond Choo, Kim-Kwang</creatorcontrib><creatorcontrib>Mei, Lin</creatorcontrib><creatorcontrib>Wei, Xiao</creatorcontrib><creatorcontrib>Luo, Xiangfeng</creatorcontrib><creatorcontrib>Hu, Chuanping</creatorcontrib><creatorcontrib>Liu, Yunhuai</creatorcontrib><title>Hierarchy-Cutting Model Based Association Semantic for Analyzing Domain Topic on the Web</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Association link network (ALN) can organize massive Web information to provide many intelligent services in our big data society. Effective semantic layered technologies not only can provide theoretical support for knowledge discovery in Web resources, but also can improve the searching efficiency of related information systems such as Web information system and industrial information system. How to realize the layer division of association semantic by the hierarchy analysis of ALN is an important research topic. To solve this problem, this paper proposes a hierarchy-cutting model of association semantic. First, experiments of four types of keywords with different linking roles are conducted to discover the possible distribution law. Experimental results show that these keywords with association role reveal previous power-law distribution. Then, based on the discovered power-law distribution, up-cutting and down-cutting points are presented to divide the association semantic into three layers. At the same time, theories of the hierarchy-cutting model are presented. Finally, examples of current core topic and permanent topics belonging to a domain are given. The experiments show that hierarchy-cutting points have high accuracy. The multilayer theory of association semantic can provide a theoretical support for knowledge recommendation with different particle sizes on ALNs.</description><subject>Analytical models</subject><subject>Association link network (ALN)</subject><subject>Big data</subject><subject>Computational modeling</subject><subject>Cutting</subject><subject>Data management</subject><subject>Data mining</subject><subject>Division</subject><subject>domain topic</subject><subject>Feature extraction</subject><subject>hierarchy-cutting model</subject><subject>Informatics</subject><subject>Information dissemination</subject><subject>Information systems</subject><subject>Internet resources</subject><subject>Knowledge engineering</subject><subject>power-law distribution</subject><subject>Semantics</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYreTbw08bzYabd094j4AQnGgxi9NaU7lRLYYrsc8NdbAvE0k7zPO5k8hNwA6wOw-n42mfQ5A9Xng1LV1eCEXEBdQsGYZKd5lxIKwZk4J5cpLRkTion6gnyNPUYT7WJXjLZd59tv-hoaXNEHk7Chw5SC9abzoaXvuDZt5y11IdJha1a73z3-GNbGt3QWNjnKWLdA-onzK3LmzCrh9XH2yMfz02w0LqZvL5PRcFpYXkNXSGEtqHkNys35QDQVypJDidJJZqraGSdFo4zjYAGFLRuO3AjmBgZz6lD0yN3h7iaGny2mTi_DNubvkoaaK5ElcMgUO1A2hpQiOr2Jfm3iTgPTe386-9N7f_roL1duDxWPiP-4qgA44-IP5flryw</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Xu, Zheng</creator><creator>Zhang, Shunxiang</creator><creator>Raymond Choo, Kim-Kwang</creator><creator>Mei, Lin</creator><creator>Wei, Xiao</creator><creator>Luo, Xiangfeng</creator><creator>Hu, Chuanping</creator><creator>Liu, Yunhuai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0540-7593</orcidid></search><sort><creationdate>20170801</creationdate><title>Hierarchy-Cutting Model Based Association Semantic for Analyzing Domain Topic on the Web</title><author>Xu, Zheng ; Zhang, Shunxiang ; Raymond Choo, Kim-Kwang ; Mei, Lin ; Wei, Xiao ; Luo, Xiangfeng ; Hu, Chuanping ; Liu, Yunhuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-53cc17b917fb263d8e54214e5f50a89faf53d7af21c1e3c4d2e2a30f6ae89ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Association link network (ALN)</topic><topic>Big data</topic><topic>Computational modeling</topic><topic>Cutting</topic><topic>Data management</topic><topic>Data mining</topic><topic>Division</topic><topic>domain topic</topic><topic>Feature extraction</topic><topic>hierarchy-cutting model</topic><topic>Informatics</topic><topic>Information dissemination</topic><topic>Information systems</topic><topic>Internet resources</topic><topic>Knowledge engineering</topic><topic>power-law distribution</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zheng</creatorcontrib><creatorcontrib>Zhang, Shunxiang</creatorcontrib><creatorcontrib>Raymond Choo, Kim-Kwang</creatorcontrib><creatorcontrib>Mei, Lin</creatorcontrib><creatorcontrib>Wei, Xiao</creatorcontrib><creatorcontrib>Luo, Xiangfeng</creatorcontrib><creatorcontrib>Hu, Chuanping</creatorcontrib><creatorcontrib>Liu, Yunhuai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Zheng</au><au>Zhang, Shunxiang</au><au>Raymond Choo, Kim-Kwang</au><au>Mei, Lin</au><au>Wei, Xiao</au><au>Luo, Xiangfeng</au><au>Hu, Chuanping</au><au>Liu, Yunhuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchy-Cutting Model Based Association Semantic for Analyzing Domain Topic on the Web</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>13</volume><issue>4</issue><spage>1941</spage><epage>1950</epage><pages>1941-1950</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Association link network (ALN) can organize massive Web information to provide many intelligent services in our big data society. Effective semantic layered technologies not only can provide theoretical support for knowledge discovery in Web resources, but also can improve the searching efficiency of related information systems such as Web information system and industrial information system. How to realize the layer division of association semantic by the hierarchy analysis of ALN is an important research topic. To solve this problem, this paper proposes a hierarchy-cutting model of association semantic. First, experiments of four types of keywords with different linking roles are conducted to discover the possible distribution law. Experimental results show that these keywords with association role reveal previous power-law distribution. Then, based on the discovered power-law distribution, up-cutting and down-cutting points are presented to divide the association semantic into three layers. At the same time, theories of the hierarchy-cutting model are presented. Finally, examples of current core topic and permanent topics belonging to a domain are given. The experiments show that hierarchy-cutting points have high accuracy. The multilayer theory of association semantic can provide a theoretical support for knowledge recommendation with different particle sizes on ALNs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2017.2647986</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0540-7593</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2017-08, Vol.13 (4), p.1941-1950
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_1927319421
source IEEE Electronic Library (IEL)
subjects Analytical models
Association link network (ALN)
Big data
Computational modeling
Cutting
Data management
Data mining
Division
domain topic
Feature extraction
hierarchy-cutting model
Informatics
Information dissemination
Information systems
Internet resources
Knowledge engineering
power-law distribution
Semantics
title Hierarchy-Cutting Model Based Association Semantic for Analyzing Domain Topic on the Web
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchy-Cutting%20Model%20Based%20Association%20Semantic%20for%20Analyzing%20Domain%20Topic%20on%20the%20Web&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Xu,%20Zheng&rft.date=2017-08-01&rft.volume=13&rft.issue=4&rft.spage=1941&rft.epage=1950&rft.pages=1941-1950&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2017.2647986&rft_dat=%3Cproquest_RIE%3E1927319421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927319421&rft_id=info:pmid/&rft_ieee_id=7811202&rfr_iscdi=true