Hierarchy-Cutting Model Based Association Semantic for Analyzing Domain Topic on the Web
Association link network (ALN) can organize massive Web information to provide many intelligent services in our big data society. Effective semantic layered technologies not only can provide theoretical support for knowledge discovery in Web resources, but also can improve the searching efficiency o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2017-08, Vol.13 (4), p.1941-1950 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1950 |
---|---|
container_issue | 4 |
container_start_page | 1941 |
container_title | IEEE transactions on industrial informatics |
container_volume | 13 |
creator | Xu, Zheng Zhang, Shunxiang Raymond Choo, Kim-Kwang Mei, Lin Wei, Xiao Luo, Xiangfeng Hu, Chuanping Liu, Yunhuai |
description | Association link network (ALN) can organize massive Web information to provide many intelligent services in our big data society. Effective semantic layered technologies not only can provide theoretical support for knowledge discovery in Web resources, but also can improve the searching efficiency of related information systems such as Web information system and industrial information system. How to realize the layer division of association semantic by the hierarchy analysis of ALN is an important research topic. To solve this problem, this paper proposes a hierarchy-cutting model of association semantic. First, experiments of four types of keywords with different linking roles are conducted to discover the possible distribution law. Experimental results show that these keywords with association role reveal previous power-law distribution. Then, based on the discovered power-law distribution, up-cutting and down-cutting points are presented to divide the association semantic into three layers. At the same time, theories of the hierarchy-cutting model are presented. Finally, examples of current core topic and permanent topics belonging to a domain are given. The experiments show that hierarchy-cutting points have high accuracy. The multilayer theory of association semantic can provide a theoretical support for knowledge recommendation with different particle sizes on ALNs. |
doi_str_mv | 10.1109/TII.2017.2647986 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1927319421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7811202</ieee_id><sourcerecordid>1927319421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-53cc17b917fb263d8e54214e5f50a89faf53d7af21c1e3c4d2e2a30f6ae89ffe3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYreTbw08bzYabd094j4AQnGgxi9NaU7lRLYYrsc8NdbAvE0k7zPO5k8hNwA6wOw-n42mfQ5A9Xng1LV1eCEXEBdQsGYZKd5lxIKwZk4J5cpLRkTion6gnyNPUYT7WJXjLZd59tv-hoaXNEHk7Chw5SC9abzoaXvuDZt5y11IdJha1a73z3-GNbGt3QWNjnKWLdA-onzK3LmzCrh9XH2yMfz02w0LqZvL5PRcFpYXkNXSGEtqHkNys35QDQVypJDidJJZqraGSdFo4zjYAGFLRuO3AjmBgZz6lD0yN3h7iaGny2mTi_DNubvkoaaK5ElcMgUO1A2hpQiOr2Jfm3iTgPTe386-9N7f_roL1duDxWPiP-4qgA44-IP5flryw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927319421</pqid></control><display><type>article</type><title>Hierarchy-Cutting Model Based Association Semantic for Analyzing Domain Topic on the Web</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Zheng ; Zhang, Shunxiang ; Raymond Choo, Kim-Kwang ; Mei, Lin ; Wei, Xiao ; Luo, Xiangfeng ; Hu, Chuanping ; Liu, Yunhuai</creator><creatorcontrib>Xu, Zheng ; Zhang, Shunxiang ; Raymond Choo, Kim-Kwang ; Mei, Lin ; Wei, Xiao ; Luo, Xiangfeng ; Hu, Chuanping ; Liu, Yunhuai</creatorcontrib><description>Association link network (ALN) can organize massive Web information to provide many intelligent services in our big data society. Effective semantic layered technologies not only can provide theoretical support for knowledge discovery in Web resources, but also can improve the searching efficiency of related information systems such as Web information system and industrial information system. How to realize the layer division of association semantic by the hierarchy analysis of ALN is an important research topic. To solve this problem, this paper proposes a hierarchy-cutting model of association semantic. First, experiments of four types of keywords with different linking roles are conducted to discover the possible distribution law. Experimental results show that these keywords with association role reveal previous power-law distribution. Then, based on the discovered power-law distribution, up-cutting and down-cutting points are presented to divide the association semantic into three layers. At the same time, theories of the hierarchy-cutting model are presented. Finally, examples of current core topic and permanent topics belonging to a domain are given. The experiments show that hierarchy-cutting points have high accuracy. The multilayer theory of association semantic can provide a theoretical support for knowledge recommendation with different particle sizes on ALNs.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2017.2647986</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Association link network (ALN) ; Big data ; Computational modeling ; Cutting ; Data management ; Data mining ; Division ; domain topic ; Feature extraction ; hierarchy-cutting model ; Informatics ; Information dissemination ; Information systems ; Internet resources ; Knowledge engineering ; power-law distribution ; Semantics</subject><ispartof>IEEE transactions on industrial informatics, 2017-08, Vol.13 (4), p.1941-1950</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-53cc17b917fb263d8e54214e5f50a89faf53d7af21c1e3c4d2e2a30f6ae89ffe3</citedby><cites>FETCH-LOGICAL-c291t-53cc17b917fb263d8e54214e5f50a89faf53d7af21c1e3c4d2e2a30f6ae89ffe3</cites><orcidid>0000-0002-0540-7593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7811202$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7811202$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Zheng</creatorcontrib><creatorcontrib>Zhang, Shunxiang</creatorcontrib><creatorcontrib>Raymond Choo, Kim-Kwang</creatorcontrib><creatorcontrib>Mei, Lin</creatorcontrib><creatorcontrib>Wei, Xiao</creatorcontrib><creatorcontrib>Luo, Xiangfeng</creatorcontrib><creatorcontrib>Hu, Chuanping</creatorcontrib><creatorcontrib>Liu, Yunhuai</creatorcontrib><title>Hierarchy-Cutting Model Based Association Semantic for Analyzing Domain Topic on the Web</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Association link network (ALN) can organize massive Web information to provide many intelligent services in our big data society. Effective semantic layered technologies not only can provide theoretical support for knowledge discovery in Web resources, but also can improve the searching efficiency of related information systems such as Web information system and industrial information system. How to realize the layer division of association semantic by the hierarchy analysis of ALN is an important research topic. To solve this problem, this paper proposes a hierarchy-cutting model of association semantic. First, experiments of four types of keywords with different linking roles are conducted to discover the possible distribution law. Experimental results show that these keywords with association role reveal previous power-law distribution. Then, based on the discovered power-law distribution, up-cutting and down-cutting points are presented to divide the association semantic into three layers. At the same time, theories of the hierarchy-cutting model are presented. Finally, examples of current core topic and permanent topics belonging to a domain are given. The experiments show that hierarchy-cutting points have high accuracy. The multilayer theory of association semantic can provide a theoretical support for knowledge recommendation with different particle sizes on ALNs.</description><subject>Analytical models</subject><subject>Association link network (ALN)</subject><subject>Big data</subject><subject>Computational modeling</subject><subject>Cutting</subject><subject>Data management</subject><subject>Data mining</subject><subject>Division</subject><subject>domain topic</subject><subject>Feature extraction</subject><subject>hierarchy-cutting model</subject><subject>Informatics</subject><subject>Information dissemination</subject><subject>Information systems</subject><subject>Internet resources</subject><subject>Knowledge engineering</subject><subject>power-law distribution</subject><subject>Semantics</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYreTbw08bzYabd094j4AQnGgxi9NaU7lRLYYrsc8NdbAvE0k7zPO5k8hNwA6wOw-n42mfQ5A9Xng1LV1eCEXEBdQsGYZKd5lxIKwZk4J5cpLRkTion6gnyNPUYT7WJXjLZd59tv-hoaXNEHk7Chw5SC9abzoaXvuDZt5y11IdJha1a73z3-GNbGt3QWNjnKWLdA-onzK3LmzCrh9XH2yMfz02w0LqZvL5PRcFpYXkNXSGEtqHkNys35QDQVypJDidJJZqraGSdFo4zjYAGFLRuO3AjmBgZz6lD0yN3h7iaGny2mTi_DNubvkoaaK5ElcMgUO1A2hpQiOr2Jfm3iTgPTe386-9N7f_roL1duDxWPiP-4qgA44-IP5flryw</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Xu, Zheng</creator><creator>Zhang, Shunxiang</creator><creator>Raymond Choo, Kim-Kwang</creator><creator>Mei, Lin</creator><creator>Wei, Xiao</creator><creator>Luo, Xiangfeng</creator><creator>Hu, Chuanping</creator><creator>Liu, Yunhuai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0540-7593</orcidid></search><sort><creationdate>20170801</creationdate><title>Hierarchy-Cutting Model Based Association Semantic for Analyzing Domain Topic on the Web</title><author>Xu, Zheng ; Zhang, Shunxiang ; Raymond Choo, Kim-Kwang ; Mei, Lin ; Wei, Xiao ; Luo, Xiangfeng ; Hu, Chuanping ; Liu, Yunhuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-53cc17b917fb263d8e54214e5f50a89faf53d7af21c1e3c4d2e2a30f6ae89ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Association link network (ALN)</topic><topic>Big data</topic><topic>Computational modeling</topic><topic>Cutting</topic><topic>Data management</topic><topic>Data mining</topic><topic>Division</topic><topic>domain topic</topic><topic>Feature extraction</topic><topic>hierarchy-cutting model</topic><topic>Informatics</topic><topic>Information dissemination</topic><topic>Information systems</topic><topic>Internet resources</topic><topic>Knowledge engineering</topic><topic>power-law distribution</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zheng</creatorcontrib><creatorcontrib>Zhang, Shunxiang</creatorcontrib><creatorcontrib>Raymond Choo, Kim-Kwang</creatorcontrib><creatorcontrib>Mei, Lin</creatorcontrib><creatorcontrib>Wei, Xiao</creatorcontrib><creatorcontrib>Luo, Xiangfeng</creatorcontrib><creatorcontrib>Hu, Chuanping</creatorcontrib><creatorcontrib>Liu, Yunhuai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Zheng</au><au>Zhang, Shunxiang</au><au>Raymond Choo, Kim-Kwang</au><au>Mei, Lin</au><au>Wei, Xiao</au><au>Luo, Xiangfeng</au><au>Hu, Chuanping</au><au>Liu, Yunhuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchy-Cutting Model Based Association Semantic for Analyzing Domain Topic on the Web</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>13</volume><issue>4</issue><spage>1941</spage><epage>1950</epage><pages>1941-1950</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Association link network (ALN) can organize massive Web information to provide many intelligent services in our big data society. Effective semantic layered technologies not only can provide theoretical support for knowledge discovery in Web resources, but also can improve the searching efficiency of related information systems such as Web information system and industrial information system. How to realize the layer division of association semantic by the hierarchy analysis of ALN is an important research topic. To solve this problem, this paper proposes a hierarchy-cutting model of association semantic. First, experiments of four types of keywords with different linking roles are conducted to discover the possible distribution law. Experimental results show that these keywords with association role reveal previous power-law distribution. Then, based on the discovered power-law distribution, up-cutting and down-cutting points are presented to divide the association semantic into three layers. At the same time, theories of the hierarchy-cutting model are presented. Finally, examples of current core topic and permanent topics belonging to a domain are given. The experiments show that hierarchy-cutting points have high accuracy. The multilayer theory of association semantic can provide a theoretical support for knowledge recommendation with different particle sizes on ALNs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2017.2647986</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0540-7593</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2017-08, Vol.13 (4), p.1941-1950 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_1927319421 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Association link network (ALN) Big data Computational modeling Cutting Data management Data mining Division domain topic Feature extraction hierarchy-cutting model Informatics Information dissemination Information systems Internet resources Knowledge engineering power-law distribution Semantics |
title | Hierarchy-Cutting Model Based Association Semantic for Analyzing Domain Topic on the Web |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchy-Cutting%20Model%20Based%20Association%20Semantic%20for%20Analyzing%20Domain%20Topic%20on%20the%20Web&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Xu,%20Zheng&rft.date=2017-08-01&rft.volume=13&rft.issue=4&rft.spage=1941&rft.epage=1950&rft.pages=1941-1950&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2017.2647986&rft_dat=%3Cproquest_RIE%3E1927319421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927319421&rft_id=info:pmid/&rft_ieee_id=7811202&rfr_iscdi=true |