Ceramic oxide coating formed on beryllium by micro-arc oxidation

•Beryllium is oxidized in a Na2CO3 electrolyte using DC micro-arc oxidation.•The coating consists of an inner barrier layer and an outer porous layer.•The coating shows improved corrosion resistance and insulation properties.•XPS and XRD indicate that the coating is crystalline BeO. Beryllium was ox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2017-07, Vol.122, p.108-117
Hauptverfasser: He, Shixiong, Ma, Yanlong, Ye, Hong, Liu, Xiangdong, Dou, Zuoyong, Xu, Qingdong, Wang, Haijun, Zhang, Pengcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue
container_start_page 108
container_title Corrosion science
container_volume 122
creator He, Shixiong
Ma, Yanlong
Ye, Hong
Liu, Xiangdong
Dou, Zuoyong
Xu, Qingdong
Wang, Haijun
Zhang, Pengcheng
description •Beryllium is oxidized in a Na2CO3 electrolyte using DC micro-arc oxidation.•The coating consists of an inner barrier layer and an outer porous layer.•The coating shows improved corrosion resistance and insulation properties.•XPS and XRD indicate that the coating is crystalline BeO. Beryllium was oxidized at a current density of 10mAcm−2 in a 0.5M Na2CO3 (pH=11.2) electrolyte to understand the micro-arc oxidation (MAO) process. Different oxidation stages were investigated by analysing the voltage–time responses and coating morphology. ‘Electric breakdown’ accompanied by sparks travelling across the metal/electrolyte interface occurs when the voltage rises above a certain point (∼202V), leading to the formation of an off-white ‘ceramic-like’ BeO coating. The MAO coating consists of two layers—an inner barrier layer and an outer porous layer—and shows improved corrosion resistance and insulation properties. XPS and XRD indicate that the coating has a chemical composition of BeO and is crystalline. Further, corrosion resistance and insulation properties of the coating were estimated by EIS analysis.
doi_str_mv 10.1016/j.corsci.2017.04.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927212059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X1631280X</els_id><sourcerecordid>1927212059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-77c9947ef369ab332f855132746f65da428a3cc0982ecddcfb776ebf327a531c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Fz62TpG2aiyiLq8KCFwVvIU0nkrJt1qQr7r83Sz17Ghiedz4eQq4pFBRofdsXxodoXMGAigLKAoCekAVthMyhlPUpWaQO5JI3H-fkIsYeABILC3K_wqAHZzL_4zrMjNeTGz8z68OAXebHrMVw2G7dfsjaQ5bA4HMdZjyhfrwkZ1ZvI1791SV5Xz--rZ7zzevTy-phkxsu-JQLYaQsBVpeS91yzmxTVZQzUda2rjpdskZzY0A2DE3XGdsKUWNrE6ErTg1fkpt57i74rz3GSfV-H8a0UlHJBKMMKpmocqbSnTEGtGoX3KDDQVFQR1eqV7MrdXSloFTJTIrdzTFMH3w7DCoROBrsXEAzqc67_wf8Anctc8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927212059</pqid></control><display><type>article</type><title>Ceramic oxide coating formed on beryllium by micro-arc oxidation</title><source>Elsevier ScienceDirect Journals</source><creator>He, Shixiong ; Ma, Yanlong ; Ye, Hong ; Liu, Xiangdong ; Dou, Zuoyong ; Xu, Qingdong ; Wang, Haijun ; Zhang, Pengcheng</creator><creatorcontrib>He, Shixiong ; Ma, Yanlong ; Ye, Hong ; Liu, Xiangdong ; Dou, Zuoyong ; Xu, Qingdong ; Wang, Haijun ; Zhang, Pengcheng</creatorcontrib><description>•Beryllium is oxidized in a Na2CO3 electrolyte using DC micro-arc oxidation.•The coating consists of an inner barrier layer and an outer porous layer.•The coating shows improved corrosion resistance and insulation properties.•XPS and XRD indicate that the coating is crystalline BeO. Beryllium was oxidized at a current density of 10mAcm−2 in a 0.5M Na2CO3 (pH=11.2) electrolyte to understand the micro-arc oxidation (MAO) process. Different oxidation stages were investigated by analysing the voltage–time responses and coating morphology. ‘Electric breakdown’ accompanied by sparks travelling across the metal/electrolyte interface occurs when the voltage rises above a certain point (∼202V), leading to the formation of an off-white ‘ceramic-like’ BeO coating. The MAO coating consists of two layers—an inner barrier layer and an outer porous layer—and shows improved corrosion resistance and insulation properties. XPS and XRD indicate that the coating has a chemical composition of BeO and is crystalline. Further, corrosion resistance and insulation properties of the coating were estimated by EIS analysis.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2017.04.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Beryllium ; Ceramic coatings ; Ceramic glazes ; Chemical composition ; Coating structure ; Corrosion resistance ; Crystal structure ; Current density ; EIS ; Electric potential ; Electrolytes ; Insulation ; MAO ; Na2CO3 electrolyte ; Oxidation ; Oxide coatings ; Protective coatings ; Studies ; X ray photoelectron spectroscopy</subject><ispartof>Corrosion science, 2017-07, Vol.122, p.108-117</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-77c9947ef369ab332f855132746f65da428a3cc0982ecddcfb776ebf327a531c3</citedby><cites>FETCH-LOGICAL-c373t-77c9947ef369ab332f855132746f65da428a3cc0982ecddcfb776ebf327a531c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X1631280X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>He, Shixiong</creatorcontrib><creatorcontrib>Ma, Yanlong</creatorcontrib><creatorcontrib>Ye, Hong</creatorcontrib><creatorcontrib>Liu, Xiangdong</creatorcontrib><creatorcontrib>Dou, Zuoyong</creatorcontrib><creatorcontrib>Xu, Qingdong</creatorcontrib><creatorcontrib>Wang, Haijun</creatorcontrib><creatorcontrib>Zhang, Pengcheng</creatorcontrib><title>Ceramic oxide coating formed on beryllium by micro-arc oxidation</title><title>Corrosion science</title><description>•Beryllium is oxidized in a Na2CO3 electrolyte using DC micro-arc oxidation.•The coating consists of an inner barrier layer and an outer porous layer.•The coating shows improved corrosion resistance and insulation properties.•XPS and XRD indicate that the coating is crystalline BeO. Beryllium was oxidized at a current density of 10mAcm−2 in a 0.5M Na2CO3 (pH=11.2) electrolyte to understand the micro-arc oxidation (MAO) process. Different oxidation stages were investigated by analysing the voltage–time responses and coating morphology. ‘Electric breakdown’ accompanied by sparks travelling across the metal/electrolyte interface occurs when the voltage rises above a certain point (∼202V), leading to the formation of an off-white ‘ceramic-like’ BeO coating. The MAO coating consists of two layers—an inner barrier layer and an outer porous layer—and shows improved corrosion resistance and insulation properties. XPS and XRD indicate that the coating has a chemical composition of BeO and is crystalline. Further, corrosion resistance and insulation properties of the coating were estimated by EIS analysis.</description><subject>Beryllium</subject><subject>Ceramic coatings</subject><subject>Ceramic glazes</subject><subject>Chemical composition</subject><subject>Coating structure</subject><subject>Corrosion resistance</subject><subject>Crystal structure</subject><subject>Current density</subject><subject>EIS</subject><subject>Electric potential</subject><subject>Electrolytes</subject><subject>Insulation</subject><subject>MAO</subject><subject>Na2CO3 electrolyte</subject><subject>Oxidation</subject><subject>Oxide coatings</subject><subject>Protective coatings</subject><subject>Studies</subject><subject>X ray photoelectron spectroscopy</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Fz62TpG2aiyiLq8KCFwVvIU0nkrJt1qQr7r83Sz17Ghiedz4eQq4pFBRofdsXxodoXMGAigLKAoCekAVthMyhlPUpWaQO5JI3H-fkIsYeABILC3K_wqAHZzL_4zrMjNeTGz8z68OAXebHrMVw2G7dfsjaQ5bA4HMdZjyhfrwkZ1ZvI1791SV5Xz--rZ7zzevTy-phkxsu-JQLYaQsBVpeS91yzmxTVZQzUda2rjpdskZzY0A2DE3XGdsKUWNrE6ErTg1fkpt57i74rz3GSfV-H8a0UlHJBKMMKpmocqbSnTEGtGoX3KDDQVFQR1eqV7MrdXSloFTJTIrdzTFMH3w7DCoROBrsXEAzqc67_wf8Anctc8w</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>He, Shixiong</creator><creator>Ma, Yanlong</creator><creator>Ye, Hong</creator><creator>Liu, Xiangdong</creator><creator>Dou, Zuoyong</creator><creator>Xu, Qingdong</creator><creator>Wang, Haijun</creator><creator>Zhang, Pengcheng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20170701</creationdate><title>Ceramic oxide coating formed on beryllium by micro-arc oxidation</title><author>He, Shixiong ; Ma, Yanlong ; Ye, Hong ; Liu, Xiangdong ; Dou, Zuoyong ; Xu, Qingdong ; Wang, Haijun ; Zhang, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-77c9947ef369ab332f855132746f65da428a3cc0982ecddcfb776ebf327a531c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Beryllium</topic><topic>Ceramic coatings</topic><topic>Ceramic glazes</topic><topic>Chemical composition</topic><topic>Coating structure</topic><topic>Corrosion resistance</topic><topic>Crystal structure</topic><topic>Current density</topic><topic>EIS</topic><topic>Electric potential</topic><topic>Electrolytes</topic><topic>Insulation</topic><topic>MAO</topic><topic>Na2CO3 electrolyte</topic><topic>Oxidation</topic><topic>Oxide coatings</topic><topic>Protective coatings</topic><topic>Studies</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Shixiong</creatorcontrib><creatorcontrib>Ma, Yanlong</creatorcontrib><creatorcontrib>Ye, Hong</creatorcontrib><creatorcontrib>Liu, Xiangdong</creatorcontrib><creatorcontrib>Dou, Zuoyong</creatorcontrib><creatorcontrib>Xu, Qingdong</creatorcontrib><creatorcontrib>Wang, Haijun</creatorcontrib><creatorcontrib>Zhang, Pengcheng</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Shixiong</au><au>Ma, Yanlong</au><au>Ye, Hong</au><au>Liu, Xiangdong</au><au>Dou, Zuoyong</au><au>Xu, Qingdong</au><au>Wang, Haijun</au><au>Zhang, Pengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ceramic oxide coating formed on beryllium by micro-arc oxidation</atitle><jtitle>Corrosion science</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>122</volume><spage>108</spage><epage>117</epage><pages>108-117</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•Beryllium is oxidized in a Na2CO3 electrolyte using DC micro-arc oxidation.•The coating consists of an inner barrier layer and an outer porous layer.•The coating shows improved corrosion resistance and insulation properties.•XPS and XRD indicate that the coating is crystalline BeO. Beryllium was oxidized at a current density of 10mAcm−2 in a 0.5M Na2CO3 (pH=11.2) electrolyte to understand the micro-arc oxidation (MAO) process. Different oxidation stages were investigated by analysing the voltage–time responses and coating morphology. ‘Electric breakdown’ accompanied by sparks travelling across the metal/electrolyte interface occurs when the voltage rises above a certain point (∼202V), leading to the formation of an off-white ‘ceramic-like’ BeO coating. The MAO coating consists of two layers—an inner barrier layer and an outer porous layer—and shows improved corrosion resistance and insulation properties. XPS and XRD indicate that the coating has a chemical composition of BeO and is crystalline. Further, corrosion resistance and insulation properties of the coating were estimated by EIS analysis.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2017.04.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2017-07, Vol.122, p.108-117
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_journals_1927212059
source Elsevier ScienceDirect Journals
subjects Beryllium
Ceramic coatings
Ceramic glazes
Chemical composition
Coating structure
Corrosion resistance
Crystal structure
Current density
EIS
Electric potential
Electrolytes
Insulation
MAO
Na2CO3 electrolyte
Oxidation
Oxide coatings
Protective coatings
Studies
X ray photoelectron spectroscopy
title Ceramic oxide coating formed on beryllium by micro-arc oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ceramic%20oxide%20coating%20formed%20on%20beryllium%20by%20micro-arc%20oxidation&rft.jtitle=Corrosion%20science&rft.au=He,%20Shixiong&rft.date=2017-07-01&rft.volume=122&rft.spage=108&rft.epage=117&rft.pages=108-117&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2017.04.001&rft_dat=%3Cproquest_cross%3E1927212059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927212059&rft_id=info:pmid/&rft_els_id=S0010938X1631280X&rfr_iscdi=true