Ceramic oxide coating formed on beryllium by micro-arc oxidation
•Beryllium is oxidized in a Na2CO3 electrolyte using DC micro-arc oxidation.•The coating consists of an inner barrier layer and an outer porous layer.•The coating shows improved corrosion resistance and insulation properties.•XPS and XRD indicate that the coating is crystalline BeO. Beryllium was ox...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2017-07, Vol.122, p.108-117 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | |
container_start_page | 108 |
container_title | Corrosion science |
container_volume | 122 |
creator | He, Shixiong Ma, Yanlong Ye, Hong Liu, Xiangdong Dou, Zuoyong Xu, Qingdong Wang, Haijun Zhang, Pengcheng |
description | •Beryllium is oxidized in a Na2CO3 electrolyte using DC micro-arc oxidation.•The coating consists of an inner barrier layer and an outer porous layer.•The coating shows improved corrosion resistance and insulation properties.•XPS and XRD indicate that the coating is crystalline BeO.
Beryllium was oxidized at a current density of 10mAcm−2 in a 0.5M Na2CO3 (pH=11.2) electrolyte to understand the micro-arc oxidation (MAO) process. Different oxidation stages were investigated by analysing the voltage–time responses and coating morphology. ‘Electric breakdown’ accompanied by sparks travelling across the metal/electrolyte interface occurs when the voltage rises above a certain point (∼202V), leading to the formation of an off-white ‘ceramic-like’ BeO coating. The MAO coating consists of two layers—an inner barrier layer and an outer porous layer—and shows improved corrosion resistance and insulation properties. XPS and XRD indicate that the coating has a chemical composition of BeO and is crystalline. Further, corrosion resistance and insulation properties of the coating were estimated by EIS analysis. |
doi_str_mv | 10.1016/j.corsci.2017.04.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927212059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X1631280X</els_id><sourcerecordid>1927212059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-77c9947ef369ab332f855132746f65da428a3cc0982ecddcfb776ebf327a531c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Fz62TpG2aiyiLq8KCFwVvIU0nkrJt1qQr7r83Sz17Ghiedz4eQq4pFBRofdsXxodoXMGAigLKAoCekAVthMyhlPUpWaQO5JI3H-fkIsYeABILC3K_wqAHZzL_4zrMjNeTGz8z68OAXebHrMVw2G7dfsjaQ5bA4HMdZjyhfrwkZ1ZvI1791SV5Xz--rZ7zzevTy-phkxsu-JQLYaQsBVpeS91yzmxTVZQzUda2rjpdskZzY0A2DE3XGdsKUWNrE6ErTg1fkpt57i74rz3GSfV-H8a0UlHJBKMMKpmocqbSnTEGtGoX3KDDQVFQR1eqV7MrdXSloFTJTIrdzTFMH3w7DCoROBrsXEAzqc67_wf8Anctc8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927212059</pqid></control><display><type>article</type><title>Ceramic oxide coating formed on beryllium by micro-arc oxidation</title><source>Elsevier ScienceDirect Journals</source><creator>He, Shixiong ; Ma, Yanlong ; Ye, Hong ; Liu, Xiangdong ; Dou, Zuoyong ; Xu, Qingdong ; Wang, Haijun ; Zhang, Pengcheng</creator><creatorcontrib>He, Shixiong ; Ma, Yanlong ; Ye, Hong ; Liu, Xiangdong ; Dou, Zuoyong ; Xu, Qingdong ; Wang, Haijun ; Zhang, Pengcheng</creatorcontrib><description>•Beryllium is oxidized in a Na2CO3 electrolyte using DC micro-arc oxidation.•The coating consists of an inner barrier layer and an outer porous layer.•The coating shows improved corrosion resistance and insulation properties.•XPS and XRD indicate that the coating is crystalline BeO.
Beryllium was oxidized at a current density of 10mAcm−2 in a 0.5M Na2CO3 (pH=11.2) electrolyte to understand the micro-arc oxidation (MAO) process. Different oxidation stages were investigated by analysing the voltage–time responses and coating morphology. ‘Electric breakdown’ accompanied by sparks travelling across the metal/electrolyte interface occurs when the voltage rises above a certain point (∼202V), leading to the formation of an off-white ‘ceramic-like’ BeO coating. The MAO coating consists of two layers—an inner barrier layer and an outer porous layer—and shows improved corrosion resistance and insulation properties. XPS and XRD indicate that the coating has a chemical composition of BeO and is crystalline. Further, corrosion resistance and insulation properties of the coating were estimated by EIS analysis.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2017.04.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Beryllium ; Ceramic coatings ; Ceramic glazes ; Chemical composition ; Coating structure ; Corrosion resistance ; Crystal structure ; Current density ; EIS ; Electric potential ; Electrolytes ; Insulation ; MAO ; Na2CO3 electrolyte ; Oxidation ; Oxide coatings ; Protective coatings ; Studies ; X ray photoelectron spectroscopy</subject><ispartof>Corrosion science, 2017-07, Vol.122, p.108-117</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-77c9947ef369ab332f855132746f65da428a3cc0982ecddcfb776ebf327a531c3</citedby><cites>FETCH-LOGICAL-c373t-77c9947ef369ab332f855132746f65da428a3cc0982ecddcfb776ebf327a531c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X1631280X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>He, Shixiong</creatorcontrib><creatorcontrib>Ma, Yanlong</creatorcontrib><creatorcontrib>Ye, Hong</creatorcontrib><creatorcontrib>Liu, Xiangdong</creatorcontrib><creatorcontrib>Dou, Zuoyong</creatorcontrib><creatorcontrib>Xu, Qingdong</creatorcontrib><creatorcontrib>Wang, Haijun</creatorcontrib><creatorcontrib>Zhang, Pengcheng</creatorcontrib><title>Ceramic oxide coating formed on beryllium by micro-arc oxidation</title><title>Corrosion science</title><description>•Beryllium is oxidized in a Na2CO3 electrolyte using DC micro-arc oxidation.•The coating consists of an inner barrier layer and an outer porous layer.•The coating shows improved corrosion resistance and insulation properties.•XPS and XRD indicate that the coating is crystalline BeO.
Beryllium was oxidized at a current density of 10mAcm−2 in a 0.5M Na2CO3 (pH=11.2) electrolyte to understand the micro-arc oxidation (MAO) process. Different oxidation stages were investigated by analysing the voltage–time responses and coating morphology. ‘Electric breakdown’ accompanied by sparks travelling across the metal/electrolyte interface occurs when the voltage rises above a certain point (∼202V), leading to the formation of an off-white ‘ceramic-like’ BeO coating. The MAO coating consists of two layers—an inner barrier layer and an outer porous layer—and shows improved corrosion resistance and insulation properties. XPS and XRD indicate that the coating has a chemical composition of BeO and is crystalline. Further, corrosion resistance and insulation properties of the coating were estimated by EIS analysis.</description><subject>Beryllium</subject><subject>Ceramic coatings</subject><subject>Ceramic glazes</subject><subject>Chemical composition</subject><subject>Coating structure</subject><subject>Corrosion resistance</subject><subject>Crystal structure</subject><subject>Current density</subject><subject>EIS</subject><subject>Electric potential</subject><subject>Electrolytes</subject><subject>Insulation</subject><subject>MAO</subject><subject>Na2CO3 electrolyte</subject><subject>Oxidation</subject><subject>Oxide coatings</subject><subject>Protective coatings</subject><subject>Studies</subject><subject>X ray photoelectron spectroscopy</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Fz62TpG2aiyiLq8KCFwVvIU0nkrJt1qQr7r83Sz17Ghiedz4eQq4pFBRofdsXxodoXMGAigLKAoCekAVthMyhlPUpWaQO5JI3H-fkIsYeABILC3K_wqAHZzL_4zrMjNeTGz8z68OAXebHrMVw2G7dfsjaQ5bA4HMdZjyhfrwkZ1ZvI1791SV5Xz--rZ7zzevTy-phkxsu-JQLYaQsBVpeS91yzmxTVZQzUda2rjpdskZzY0A2DE3XGdsKUWNrE6ErTg1fkpt57i74rz3GSfV-H8a0UlHJBKMMKpmocqbSnTEGtGoX3KDDQVFQR1eqV7MrdXSloFTJTIrdzTFMH3w7DCoROBrsXEAzqc67_wf8Anctc8w</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>He, Shixiong</creator><creator>Ma, Yanlong</creator><creator>Ye, Hong</creator><creator>Liu, Xiangdong</creator><creator>Dou, Zuoyong</creator><creator>Xu, Qingdong</creator><creator>Wang, Haijun</creator><creator>Zhang, Pengcheng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20170701</creationdate><title>Ceramic oxide coating formed on beryllium by micro-arc oxidation</title><author>He, Shixiong ; Ma, Yanlong ; Ye, Hong ; Liu, Xiangdong ; Dou, Zuoyong ; Xu, Qingdong ; Wang, Haijun ; Zhang, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-77c9947ef369ab332f855132746f65da428a3cc0982ecddcfb776ebf327a531c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Beryllium</topic><topic>Ceramic coatings</topic><topic>Ceramic glazes</topic><topic>Chemical composition</topic><topic>Coating structure</topic><topic>Corrosion resistance</topic><topic>Crystal structure</topic><topic>Current density</topic><topic>EIS</topic><topic>Electric potential</topic><topic>Electrolytes</topic><topic>Insulation</topic><topic>MAO</topic><topic>Na2CO3 electrolyte</topic><topic>Oxidation</topic><topic>Oxide coatings</topic><topic>Protective coatings</topic><topic>Studies</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Shixiong</creatorcontrib><creatorcontrib>Ma, Yanlong</creatorcontrib><creatorcontrib>Ye, Hong</creatorcontrib><creatorcontrib>Liu, Xiangdong</creatorcontrib><creatorcontrib>Dou, Zuoyong</creatorcontrib><creatorcontrib>Xu, Qingdong</creatorcontrib><creatorcontrib>Wang, Haijun</creatorcontrib><creatorcontrib>Zhang, Pengcheng</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Shixiong</au><au>Ma, Yanlong</au><au>Ye, Hong</au><au>Liu, Xiangdong</au><au>Dou, Zuoyong</au><au>Xu, Qingdong</au><au>Wang, Haijun</au><au>Zhang, Pengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ceramic oxide coating formed on beryllium by micro-arc oxidation</atitle><jtitle>Corrosion science</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>122</volume><spage>108</spage><epage>117</epage><pages>108-117</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•Beryllium is oxidized in a Na2CO3 electrolyte using DC micro-arc oxidation.•The coating consists of an inner barrier layer and an outer porous layer.•The coating shows improved corrosion resistance and insulation properties.•XPS and XRD indicate that the coating is crystalline BeO.
Beryllium was oxidized at a current density of 10mAcm−2 in a 0.5M Na2CO3 (pH=11.2) electrolyte to understand the micro-arc oxidation (MAO) process. Different oxidation stages were investigated by analysing the voltage–time responses and coating morphology. ‘Electric breakdown’ accompanied by sparks travelling across the metal/electrolyte interface occurs when the voltage rises above a certain point (∼202V), leading to the formation of an off-white ‘ceramic-like’ BeO coating. The MAO coating consists of two layers—an inner barrier layer and an outer porous layer—and shows improved corrosion resistance and insulation properties. XPS and XRD indicate that the coating has a chemical composition of BeO and is crystalline. Further, corrosion resistance and insulation properties of the coating were estimated by EIS analysis.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2017.04.001</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2017-07, Vol.122, p.108-117 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_proquest_journals_1927212059 |
source | Elsevier ScienceDirect Journals |
subjects | Beryllium Ceramic coatings Ceramic glazes Chemical composition Coating structure Corrosion resistance Crystal structure Current density EIS Electric potential Electrolytes Insulation MAO Na2CO3 electrolyte Oxidation Oxide coatings Protective coatings Studies X ray photoelectron spectroscopy |
title | Ceramic oxide coating formed on beryllium by micro-arc oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ceramic%20oxide%20coating%20formed%20on%20beryllium%20by%20micro-arc%20oxidation&rft.jtitle=Corrosion%20science&rft.au=He,%20Shixiong&rft.date=2017-07-01&rft.volume=122&rft.spage=108&rft.epage=117&rft.pages=108-117&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2017.04.001&rft_dat=%3Cproquest_cross%3E1927212059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927212059&rft_id=info:pmid/&rft_els_id=S0010938X1631280X&rfr_iscdi=true |