Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents

[Display omitted] •The degradation of Mg-alloy substrate would improve the in vitro rapamycin release on a Mg alloy based drug-eluting system.•Quantitative analyzation distinguished that the improved drug release was mainly caused by H2 evolution, while pH played a trivial role.•Mg-based PLGA/RAPA d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2017-07, Vol.123, p.297-309
Hauptverfasser: Shi, Yongjuan, Pei, Jia, Zhang, Lei, Lee, Byung Kook, Yun, Yeonhee, Zhang, Jian, Li, Zhonghua, Gu, Song, Park, Kinam, Yuan, Guangyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 309
container_issue
container_start_page 297
container_title Corrosion science
container_volume 123
creator Shi, Yongjuan
Pei, Jia
Zhang, Lei
Lee, Byung Kook
Yun, Yeonhee
Zhang, Jian
Li, Zhonghua
Gu, Song
Park, Kinam
Yuan, Guangyin
description [Display omitted] •The degradation of Mg-alloy substrate would improve the in vitro rapamycin release on a Mg alloy based drug-eluting system.•Quantitative analyzation distinguished that the improved drug release was mainly caused by H2 evolution, while pH played a trivial role.•Mg-based PLGA/RAPA drug-loading system exhibited more pronounced long-term inhibition for the proliferation of smooth muscle cells. To understand the possible influence of substrate degradation on the drug-loading system of magnesium alloy-based drug-eluting stents, a rapamycin drug-loading poly(lactic-co-glycolic acid) coating was prepared on Mg-Nd-Zn-Zr stents for a systematic investigation in a phosphate buffer system. Mg degradation accelerated the drug release kinetics prominently, which was mainly attributed to H2 evolution in the diffusion-controlled phase while thereafter to PLGA erosion. Although physiochemical stability of the released rapamycin was partially deteriorated by magnesium degradation, the drug-loading system on magnesium substrates exhibited a more potent long-term inhibition on smooth muscle cell proliferation in vitro as compared to drug-loaded stainless steel.
doi_str_mv 10.1016/j.corsci.2017.04.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927146078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X16314433</els_id><sourcerecordid>1927146078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d1848d60033059074a29e034a7823380028770ec5948580b77aa7f940fd22dbd3</originalsourceid><addsrcrecordid>eNp9kd9qHCEUxiUk0M2fN8iFkOuZHEd3dW4CJbRJIZCbLvROXD3uusyMiTqFPklfty5T2ruAIhy-73fO8SPklkHLgG3uj62NKdvQdsBkC6KtxTOyYkr2DYh-c05WAAyanqsfn8hlzkcAqFpYkd_byWHKxUwuTHtaDkjRe7SFRk9Hs58wh3mkDvfJOFNCnGg9Ls17mnBAk5FWa70lNG8pDsFj-ifLY4zlQMc52wGpxWHI1Mf0n9vsKsAtOBzmchohF5xKviYX3gwZb_6-V2T79cv3x-fm5fXp2-Pnl8ZyLkrjmBLKbQA4h3UPUpiuR-DCSNVxruqWSkpAu-6FWivYSWmM9L0A77rO7Ry_IncLtw7_PmMu-hjnNNWWmvWdZGIDUlWVWFQ2xZwTev2WwmjSL81AnyLQR71EoE8RaBC6FqvtYbFh3eBnwKSrAieLLqT6xdrF8DHgDz_Tk60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927146078</pqid></control><display><type>article</type><title>Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents</title><source>Elsevier ScienceDirect Journals</source><creator>Shi, Yongjuan ; Pei, Jia ; Zhang, Lei ; Lee, Byung Kook ; Yun, Yeonhee ; Zhang, Jian ; Li, Zhonghua ; Gu, Song ; Park, Kinam ; Yuan, Guangyin</creator><creatorcontrib>Shi, Yongjuan ; Pei, Jia ; Zhang, Lei ; Lee, Byung Kook ; Yun, Yeonhee ; Zhang, Jian ; Li, Zhonghua ; Gu, Song ; Park, Kinam ; Yuan, Guangyin</creatorcontrib><description>[Display omitted] •The degradation of Mg-alloy substrate would improve the in vitro rapamycin release on a Mg alloy based drug-eluting system.•Quantitative analyzation distinguished that the improved drug release was mainly caused by H2 evolution, while pH played a trivial role.•Mg-based PLGA/RAPA drug-loading system exhibited more pronounced long-term inhibition for the proliferation of smooth muscle cells. To understand the possible influence of substrate degradation on the drug-loading system of magnesium alloy-based drug-eluting stents, a rapamycin drug-loading poly(lactic-co-glycolic acid) coating was prepared on Mg-Nd-Zn-Zr stents for a systematic investigation in a phosphate buffer system. Mg degradation accelerated the drug release kinetics prominently, which was mainly attributed to H2 evolution in the diffusion-controlled phase while thereafter to PLGA erosion. Although physiochemical stability of the released rapamycin was partially deteriorated by magnesium degradation, the drug-loading system on magnesium substrates exhibited a more potent long-term inhibition on smooth muscle cell proliferation in vitro as compared to drug-loaded stainless steel.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2017.04.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>A. Magnesium ; A. Organic coatings ; A. Polymer ; B. Erosion ; C. Interfaces ; C. Kinetic parameters ; Cells ; Control stability ; Degradation ; Drug delivery systems ; Drugs ; Glycolic acid ; In vitro methods and tests ; Magnesium ; Magnesium base alloys ; Physiochemistry ; Rapamycin ; Stents ; Substrate inhibition ; Substrates ; Surgical implants ; Zinc ; Zirconium</subject><ispartof>Corrosion science, 2017-07, Vol.123, p.297-309</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d1848d60033059074a29e034a7823380028770ec5948580b77aa7f940fd22dbd3</citedby><cites>FETCH-LOGICAL-c334t-d1848d60033059074a29e034a7823380028770ec5948580b77aa7f940fd22dbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X16314433$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Shi, Yongjuan</creatorcontrib><creatorcontrib>Pei, Jia</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Lee, Byung Kook</creatorcontrib><creatorcontrib>Yun, Yeonhee</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Li, Zhonghua</creatorcontrib><creatorcontrib>Gu, Song</creatorcontrib><creatorcontrib>Park, Kinam</creatorcontrib><creatorcontrib>Yuan, Guangyin</creatorcontrib><title>Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents</title><title>Corrosion science</title><description>[Display omitted] •The degradation of Mg-alloy substrate would improve the in vitro rapamycin release on a Mg alloy based drug-eluting system.•Quantitative analyzation distinguished that the improved drug release was mainly caused by H2 evolution, while pH played a trivial role.•Mg-based PLGA/RAPA drug-loading system exhibited more pronounced long-term inhibition for the proliferation of smooth muscle cells. To understand the possible influence of substrate degradation on the drug-loading system of magnesium alloy-based drug-eluting stents, a rapamycin drug-loading poly(lactic-co-glycolic acid) coating was prepared on Mg-Nd-Zn-Zr stents for a systematic investigation in a phosphate buffer system. Mg degradation accelerated the drug release kinetics prominently, which was mainly attributed to H2 evolution in the diffusion-controlled phase while thereafter to PLGA erosion. Although physiochemical stability of the released rapamycin was partially deteriorated by magnesium degradation, the drug-loading system on magnesium substrates exhibited a more potent long-term inhibition on smooth muscle cell proliferation in vitro as compared to drug-loaded stainless steel.</description><subject>A. Magnesium</subject><subject>A. Organic coatings</subject><subject>A. Polymer</subject><subject>B. Erosion</subject><subject>C. Interfaces</subject><subject>C. Kinetic parameters</subject><subject>Cells</subject><subject>Control stability</subject><subject>Degradation</subject><subject>Drug delivery systems</subject><subject>Drugs</subject><subject>Glycolic acid</subject><subject>In vitro methods and tests</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Physiochemistry</subject><subject>Rapamycin</subject><subject>Stents</subject><subject>Substrate inhibition</subject><subject>Substrates</subject><subject>Surgical implants</subject><subject>Zinc</subject><subject>Zirconium</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kd9qHCEUxiUk0M2fN8iFkOuZHEd3dW4CJbRJIZCbLvROXD3uusyMiTqFPklfty5T2ruAIhy-73fO8SPklkHLgG3uj62NKdvQdsBkC6KtxTOyYkr2DYh-c05WAAyanqsfn8hlzkcAqFpYkd_byWHKxUwuTHtaDkjRe7SFRk9Hs58wh3mkDvfJOFNCnGg9Ls17mnBAk5FWa70lNG8pDsFj-ifLY4zlQMc52wGpxWHI1Mf0n9vsKsAtOBzmchohF5xKviYX3gwZb_6-V2T79cv3x-fm5fXp2-Pnl8ZyLkrjmBLKbQA4h3UPUpiuR-DCSNVxruqWSkpAu-6FWivYSWmM9L0A77rO7Ry_IncLtw7_PmMu-hjnNNWWmvWdZGIDUlWVWFQ2xZwTev2WwmjSL81AnyLQR71EoE8RaBC6FqvtYbFh3eBnwKSrAieLLqT6xdrF8DHgDz_Tk60</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Shi, Yongjuan</creator><creator>Pei, Jia</creator><creator>Zhang, Lei</creator><creator>Lee, Byung Kook</creator><creator>Yun, Yeonhee</creator><creator>Zhang, Jian</creator><creator>Li, Zhonghua</creator><creator>Gu, Song</creator><creator>Park, Kinam</creator><creator>Yuan, Guangyin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20170715</creationdate><title>Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents</title><author>Shi, Yongjuan ; Pei, Jia ; Zhang, Lei ; Lee, Byung Kook ; Yun, Yeonhee ; Zhang, Jian ; Li, Zhonghua ; Gu, Song ; Park, Kinam ; Yuan, Guangyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d1848d60033059074a29e034a7823380028770ec5948580b77aa7f940fd22dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A. Magnesium</topic><topic>A. Organic coatings</topic><topic>A. Polymer</topic><topic>B. Erosion</topic><topic>C. Interfaces</topic><topic>C. Kinetic parameters</topic><topic>Cells</topic><topic>Control stability</topic><topic>Degradation</topic><topic>Drug delivery systems</topic><topic>Drugs</topic><topic>Glycolic acid</topic><topic>In vitro methods and tests</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Physiochemistry</topic><topic>Rapamycin</topic><topic>Stents</topic><topic>Substrate inhibition</topic><topic>Substrates</topic><topic>Surgical implants</topic><topic>Zinc</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yongjuan</creatorcontrib><creatorcontrib>Pei, Jia</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Lee, Byung Kook</creatorcontrib><creatorcontrib>Yun, Yeonhee</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Li, Zhonghua</creatorcontrib><creatorcontrib>Gu, Song</creatorcontrib><creatorcontrib>Park, Kinam</creatorcontrib><creatorcontrib>Yuan, Guangyin</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yongjuan</au><au>Pei, Jia</au><au>Zhang, Lei</au><au>Lee, Byung Kook</au><au>Yun, Yeonhee</au><au>Zhang, Jian</au><au>Li, Zhonghua</au><au>Gu, Song</au><au>Park, Kinam</au><au>Yuan, Guangyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents</atitle><jtitle>Corrosion science</jtitle><date>2017-07-15</date><risdate>2017</risdate><volume>123</volume><spage>297</spage><epage>309</epage><pages>297-309</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>[Display omitted] •The degradation of Mg-alloy substrate would improve the in vitro rapamycin release on a Mg alloy based drug-eluting system.•Quantitative analyzation distinguished that the improved drug release was mainly caused by H2 evolution, while pH played a trivial role.•Mg-based PLGA/RAPA drug-loading system exhibited more pronounced long-term inhibition for the proliferation of smooth muscle cells. To understand the possible influence of substrate degradation on the drug-loading system of magnesium alloy-based drug-eluting stents, a rapamycin drug-loading poly(lactic-co-glycolic acid) coating was prepared on Mg-Nd-Zn-Zr stents for a systematic investigation in a phosphate buffer system. Mg degradation accelerated the drug release kinetics prominently, which was mainly attributed to H2 evolution in the diffusion-controlled phase while thereafter to PLGA erosion. Although physiochemical stability of the released rapamycin was partially deteriorated by magnesium degradation, the drug-loading system on magnesium substrates exhibited a more potent long-term inhibition on smooth muscle cell proliferation in vitro as compared to drug-loaded stainless steel.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2017.04.016</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2017-07, Vol.123, p.297-309
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_journals_1927146078
source Elsevier ScienceDirect Journals
subjects A. Magnesium
A. Organic coatings
A. Polymer
B. Erosion
C. Interfaces
C. Kinetic parameters
Cells
Control stability
Degradation
Drug delivery systems
Drugs
Glycolic acid
In vitro methods and tests
Magnesium
Magnesium base alloys
Physiochemistry
Rapamycin
Stents
Substrate inhibition
Substrates
Surgical implants
Zinc
Zirconium
title Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20effect%20of%20magnesium%20degradation%20on%20drug%20release%20and%20anti-proliferation%20on%20smooth%20muscle%20cells%20for%20magnesium-based%20drug%20eluting%20stents&rft.jtitle=Corrosion%20science&rft.au=Shi,%20Yongjuan&rft.date=2017-07-15&rft.volume=123&rft.spage=297&rft.epage=309&rft.pages=297-309&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2017.04.016&rft_dat=%3Cproquest_cross%3E1927146078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927146078&rft_id=info:pmid/&rft_els_id=S0010938X16314433&rfr_iscdi=true