Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents
[Display omitted] •The degradation of Mg-alloy substrate would improve the in vitro rapamycin release on a Mg alloy based drug-eluting system.•Quantitative analyzation distinguished that the improved drug release was mainly caused by H2 evolution, while pH played a trivial role.•Mg-based PLGA/RAPA d...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2017-07, Vol.123, p.297-309 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 309 |
---|---|
container_issue | |
container_start_page | 297 |
container_title | Corrosion science |
container_volume | 123 |
creator | Shi, Yongjuan Pei, Jia Zhang, Lei Lee, Byung Kook Yun, Yeonhee Zhang, Jian Li, Zhonghua Gu, Song Park, Kinam Yuan, Guangyin |
description | [Display omitted]
•The degradation of Mg-alloy substrate would improve the in vitro rapamycin release on a Mg alloy based drug-eluting system.•Quantitative analyzation distinguished that the improved drug release was mainly caused by H2 evolution, while pH played a trivial role.•Mg-based PLGA/RAPA drug-loading system exhibited more pronounced long-term inhibition for the proliferation of smooth muscle cells.
To understand the possible influence of substrate degradation on the drug-loading system of magnesium alloy-based drug-eluting stents, a rapamycin drug-loading poly(lactic-co-glycolic acid) coating was prepared on Mg-Nd-Zn-Zr stents for a systematic investigation in a phosphate buffer system. Mg degradation accelerated the drug release kinetics prominently, which was mainly attributed to H2 evolution in the diffusion-controlled phase while thereafter to PLGA erosion. Although physiochemical stability of the released rapamycin was partially deteriorated by magnesium degradation, the drug-loading system on magnesium substrates exhibited a more potent long-term inhibition on smooth muscle cell proliferation in vitro as compared to drug-loaded stainless steel. |
doi_str_mv | 10.1016/j.corsci.2017.04.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927146078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X16314433</els_id><sourcerecordid>1927146078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d1848d60033059074a29e034a7823380028770ec5948580b77aa7f940fd22dbd3</originalsourceid><addsrcrecordid>eNp9kd9qHCEUxiUk0M2fN8iFkOuZHEd3dW4CJbRJIZCbLvROXD3uusyMiTqFPklfty5T2ruAIhy-73fO8SPklkHLgG3uj62NKdvQdsBkC6KtxTOyYkr2DYh-c05WAAyanqsfn8hlzkcAqFpYkd_byWHKxUwuTHtaDkjRe7SFRk9Hs58wh3mkDvfJOFNCnGg9Ls17mnBAk5FWa70lNG8pDsFj-ifLY4zlQMc52wGpxWHI1Mf0n9vsKsAtOBzmchohF5xKviYX3gwZb_6-V2T79cv3x-fm5fXp2-Pnl8ZyLkrjmBLKbQA4h3UPUpiuR-DCSNVxruqWSkpAu-6FWivYSWmM9L0A77rO7Ry_IncLtw7_PmMu-hjnNNWWmvWdZGIDUlWVWFQ2xZwTev2WwmjSL81AnyLQR71EoE8RaBC6FqvtYbFh3eBnwKSrAieLLqT6xdrF8DHgDz_Tk60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927146078</pqid></control><display><type>article</type><title>Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents</title><source>Elsevier ScienceDirect Journals</source><creator>Shi, Yongjuan ; Pei, Jia ; Zhang, Lei ; Lee, Byung Kook ; Yun, Yeonhee ; Zhang, Jian ; Li, Zhonghua ; Gu, Song ; Park, Kinam ; Yuan, Guangyin</creator><creatorcontrib>Shi, Yongjuan ; Pei, Jia ; Zhang, Lei ; Lee, Byung Kook ; Yun, Yeonhee ; Zhang, Jian ; Li, Zhonghua ; Gu, Song ; Park, Kinam ; Yuan, Guangyin</creatorcontrib><description>[Display omitted]
•The degradation of Mg-alloy substrate would improve the in vitro rapamycin release on a Mg alloy based drug-eluting system.•Quantitative analyzation distinguished that the improved drug release was mainly caused by H2 evolution, while pH played a trivial role.•Mg-based PLGA/RAPA drug-loading system exhibited more pronounced long-term inhibition for the proliferation of smooth muscle cells.
To understand the possible influence of substrate degradation on the drug-loading system of magnesium alloy-based drug-eluting stents, a rapamycin drug-loading poly(lactic-co-glycolic acid) coating was prepared on Mg-Nd-Zn-Zr stents for a systematic investigation in a phosphate buffer system. Mg degradation accelerated the drug release kinetics prominently, which was mainly attributed to H2 evolution in the diffusion-controlled phase while thereafter to PLGA erosion. Although physiochemical stability of the released rapamycin was partially deteriorated by magnesium degradation, the drug-loading system on magnesium substrates exhibited a more potent long-term inhibition on smooth muscle cell proliferation in vitro as compared to drug-loaded stainless steel.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2017.04.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>A. Magnesium ; A. Organic coatings ; A. Polymer ; B. Erosion ; C. Interfaces ; C. Kinetic parameters ; Cells ; Control stability ; Degradation ; Drug delivery systems ; Drugs ; Glycolic acid ; In vitro methods and tests ; Magnesium ; Magnesium base alloys ; Physiochemistry ; Rapamycin ; Stents ; Substrate inhibition ; Substrates ; Surgical implants ; Zinc ; Zirconium</subject><ispartof>Corrosion science, 2017-07, Vol.123, p.297-309</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d1848d60033059074a29e034a7823380028770ec5948580b77aa7f940fd22dbd3</citedby><cites>FETCH-LOGICAL-c334t-d1848d60033059074a29e034a7823380028770ec5948580b77aa7f940fd22dbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X16314433$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Shi, Yongjuan</creatorcontrib><creatorcontrib>Pei, Jia</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Lee, Byung Kook</creatorcontrib><creatorcontrib>Yun, Yeonhee</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Li, Zhonghua</creatorcontrib><creatorcontrib>Gu, Song</creatorcontrib><creatorcontrib>Park, Kinam</creatorcontrib><creatorcontrib>Yuan, Guangyin</creatorcontrib><title>Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents</title><title>Corrosion science</title><description>[Display omitted]
•The degradation of Mg-alloy substrate would improve the in vitro rapamycin release on a Mg alloy based drug-eluting system.•Quantitative analyzation distinguished that the improved drug release was mainly caused by H2 evolution, while pH played a trivial role.•Mg-based PLGA/RAPA drug-loading system exhibited more pronounced long-term inhibition for the proliferation of smooth muscle cells.
To understand the possible influence of substrate degradation on the drug-loading system of magnesium alloy-based drug-eluting stents, a rapamycin drug-loading poly(lactic-co-glycolic acid) coating was prepared on Mg-Nd-Zn-Zr stents for a systematic investigation in a phosphate buffer system. Mg degradation accelerated the drug release kinetics prominently, which was mainly attributed to H2 evolution in the diffusion-controlled phase while thereafter to PLGA erosion. Although physiochemical stability of the released rapamycin was partially deteriorated by magnesium degradation, the drug-loading system on magnesium substrates exhibited a more potent long-term inhibition on smooth muscle cell proliferation in vitro as compared to drug-loaded stainless steel.</description><subject>A. Magnesium</subject><subject>A. Organic coatings</subject><subject>A. Polymer</subject><subject>B. Erosion</subject><subject>C. Interfaces</subject><subject>C. Kinetic parameters</subject><subject>Cells</subject><subject>Control stability</subject><subject>Degradation</subject><subject>Drug delivery systems</subject><subject>Drugs</subject><subject>Glycolic acid</subject><subject>In vitro methods and tests</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Physiochemistry</subject><subject>Rapamycin</subject><subject>Stents</subject><subject>Substrate inhibition</subject><subject>Substrates</subject><subject>Surgical implants</subject><subject>Zinc</subject><subject>Zirconium</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kd9qHCEUxiUk0M2fN8iFkOuZHEd3dW4CJbRJIZCbLvROXD3uusyMiTqFPklfty5T2ruAIhy-73fO8SPklkHLgG3uj62NKdvQdsBkC6KtxTOyYkr2DYh-c05WAAyanqsfn8hlzkcAqFpYkd_byWHKxUwuTHtaDkjRe7SFRk9Hs58wh3mkDvfJOFNCnGg9Ls17mnBAk5FWa70lNG8pDsFj-ifLY4zlQMc52wGpxWHI1Mf0n9vsKsAtOBzmchohF5xKviYX3gwZb_6-V2T79cv3x-fm5fXp2-Pnl8ZyLkrjmBLKbQA4h3UPUpiuR-DCSNVxruqWSkpAu-6FWivYSWmM9L0A77rO7Ry_IncLtw7_PmMu-hjnNNWWmvWdZGIDUlWVWFQ2xZwTev2WwmjSL81AnyLQR71EoE8RaBC6FqvtYbFh3eBnwKSrAieLLqT6xdrF8DHgDz_Tk60</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Shi, Yongjuan</creator><creator>Pei, Jia</creator><creator>Zhang, Lei</creator><creator>Lee, Byung Kook</creator><creator>Yun, Yeonhee</creator><creator>Zhang, Jian</creator><creator>Li, Zhonghua</creator><creator>Gu, Song</creator><creator>Park, Kinam</creator><creator>Yuan, Guangyin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20170715</creationdate><title>Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents</title><author>Shi, Yongjuan ; Pei, Jia ; Zhang, Lei ; Lee, Byung Kook ; Yun, Yeonhee ; Zhang, Jian ; Li, Zhonghua ; Gu, Song ; Park, Kinam ; Yuan, Guangyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d1848d60033059074a29e034a7823380028770ec5948580b77aa7f940fd22dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A. Magnesium</topic><topic>A. Organic coatings</topic><topic>A. Polymer</topic><topic>B. Erosion</topic><topic>C. Interfaces</topic><topic>C. Kinetic parameters</topic><topic>Cells</topic><topic>Control stability</topic><topic>Degradation</topic><topic>Drug delivery systems</topic><topic>Drugs</topic><topic>Glycolic acid</topic><topic>In vitro methods and tests</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Physiochemistry</topic><topic>Rapamycin</topic><topic>Stents</topic><topic>Substrate inhibition</topic><topic>Substrates</topic><topic>Surgical implants</topic><topic>Zinc</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yongjuan</creatorcontrib><creatorcontrib>Pei, Jia</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Lee, Byung Kook</creatorcontrib><creatorcontrib>Yun, Yeonhee</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Li, Zhonghua</creatorcontrib><creatorcontrib>Gu, Song</creatorcontrib><creatorcontrib>Park, Kinam</creatorcontrib><creatorcontrib>Yuan, Guangyin</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yongjuan</au><au>Pei, Jia</au><au>Zhang, Lei</au><au>Lee, Byung Kook</au><au>Yun, Yeonhee</au><au>Zhang, Jian</au><au>Li, Zhonghua</au><au>Gu, Song</au><au>Park, Kinam</au><au>Yuan, Guangyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents</atitle><jtitle>Corrosion science</jtitle><date>2017-07-15</date><risdate>2017</risdate><volume>123</volume><spage>297</spage><epage>309</epage><pages>297-309</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>[Display omitted]
•The degradation of Mg-alloy substrate would improve the in vitro rapamycin release on a Mg alloy based drug-eluting system.•Quantitative analyzation distinguished that the improved drug release was mainly caused by H2 evolution, while pH played a trivial role.•Mg-based PLGA/RAPA drug-loading system exhibited more pronounced long-term inhibition for the proliferation of smooth muscle cells.
To understand the possible influence of substrate degradation on the drug-loading system of magnesium alloy-based drug-eluting stents, a rapamycin drug-loading poly(lactic-co-glycolic acid) coating was prepared on Mg-Nd-Zn-Zr stents for a systematic investigation in a phosphate buffer system. Mg degradation accelerated the drug release kinetics prominently, which was mainly attributed to H2 evolution in the diffusion-controlled phase while thereafter to PLGA erosion. Although physiochemical stability of the released rapamycin was partially deteriorated by magnesium degradation, the drug-loading system on magnesium substrates exhibited a more potent long-term inhibition on smooth muscle cell proliferation in vitro as compared to drug-loaded stainless steel.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2017.04.016</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2017-07, Vol.123, p.297-309 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_proquest_journals_1927146078 |
source | Elsevier ScienceDirect Journals |
subjects | A. Magnesium A. Organic coatings A. Polymer B. Erosion C. Interfaces C. Kinetic parameters Cells Control stability Degradation Drug delivery systems Drugs Glycolic acid In vitro methods and tests Magnesium Magnesium base alloys Physiochemistry Rapamycin Stents Substrate inhibition Substrates Surgical implants Zinc Zirconium |
title | Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20effect%20of%20magnesium%20degradation%20on%20drug%20release%20and%20anti-proliferation%20on%20smooth%20muscle%20cells%20for%20magnesium-based%20drug%20eluting%20stents&rft.jtitle=Corrosion%20science&rft.au=Shi,%20Yongjuan&rft.date=2017-07-15&rft.volume=123&rft.spage=297&rft.epage=309&rft.pages=297-309&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2017.04.016&rft_dat=%3Cproquest_cross%3E1927146078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927146078&rft_id=info:pmid/&rft_els_id=S0010938X16314433&rfr_iscdi=true |